OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16546–16560

Analysis of the Purcell effect in photonic and plasmonic crystals with losses

Hideo Iwase, Dirk Englund, and Jelena Vučković  »View Author Affiliations

Optics Express, Vol. 18, Issue 16, pp. 16546-16560 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2326 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the spontaneous emission rate of emitter in a periodically patterned metal or dielectric membrane in the picture of a multimode field of damped Bloch states. For Bloch states in dielectric structures, the approach fully describes the Purcell effect in photonic crystal or spatially coupled cavities with losses. For a metal membrane, the Purcell factor depends on resistive loss at the resonant frequency of surface plasmon polariton (SPP). Analysis of an InP-Au-InP structure indicates that the SPP’s Purcell effect can exceed a value of 50 in the ultraviolet. For a plasmonic crystal, we find a position-dependent Purcell enhancement with a mean value similar to the unpatterned membrane.

© 2010 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Photonic Crystals

Original Manuscript: May 24, 2010
Revised Manuscript: July 3, 2010
Manuscript Accepted: July 4, 2010
Published: July 22, 2010

Hideo Iwase, Dirk Englund, and Jelena Vučković, "Analysis of the Purcell effect in photonic and plasmonic crystals with losses," Opt. Express 18, 16546-16560 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  2. M. O. Scully, and M. S. Zubairy, Quantum Optics (Cambridge University Press,1997), Chap. 9.
  3. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006). [CrossRef] [PubMed]
  4. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002). [CrossRef] [PubMed]
  5. Y. Gong and J. Vučković, “Design of plasmon cavities for solid-state cavity quantum electrodynamics applications,” Appl. Phys. Lett. 90(3), 033113 (2007). [CrossRef]
  6. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14(5), 1957–1964 (2006). [CrossRef] [PubMed]
  7. M. Boroditsky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, “Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals,” J. Lightwave Technol. 17(11), 2096–2112 (1999). [CrossRef]
  8. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).
  9. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004). [CrossRef] [PubMed]
  10. J. Vučković, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36(10), 1131–1144 (2000). [CrossRef]
  11. A. Neogi, C. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66(15), 153305 (2002). [CrossRef]
  12. I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999). [CrossRef]
  13. W. L. Barnes, “Electromagnetic Crystals for Surface Plasmon Polaritons and the Extraction of Light from Emissive Devices,” J. Lightwave Technol. 17(11), 2170–2182 (1999). [CrossRef]
  14. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998). [CrossRef]
  15. R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near partially reflecting surface,” J. Chem. Phys. 60(7), 2744–2748 (1974). [CrossRef]
  16. R. R. Chance, A. Prock, and R. Silbey, “Molecular Fluorescence and Energy Transfer near Interfaces,” Adv. Chem. Phys. 37, 1–65 (1978). [CrossRef]
  17. R. K. Lee, Y. Xu, and A. Yariv, “Modified spontaneous emission from a two-dimensional photonic bandgap crystal slab,” J. Opt. Soc. Am. B 17(8), 1438–1442 (2000). [CrossRef]
  18. G. Lecamp, P. Lalanne, and J. P. Hugonin, “Very large spontaneous-emission β factors in photonic-crystal waveguides,” Phys. Rev. Lett. 99(2), 023902 (2007). [CrossRef] [PubMed]
  19. V. S. C. Manga Tao and S. Hughes, “Single quantum-dot Purcell factor and β factor in a photonic crystal waveguide,” Phys. Rev. B 75(20), 205437 (2007). [CrossRef]
  20. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981). [CrossRef]
  21. E. N. Economou, “Surface Plasmons in Thin Films,” Phys. Rev. 182(2), 539–554 (1969). [CrossRef]
  22. M. Bahriz, V. Moreau, R. Colombelli, O. Crisafulli, and O. Painter, “Design of mid-IR and THz quantum cascade laser cavities with complete TM photonic bandgap,” Opt. Express 15(10), 5948–5965 (2007). [CrossRef] [PubMed]
  23. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75(4), 1896–1899 (1994). [CrossRef]
  24. S. Nojima, “Enhancement of Optical Gain in Two-dimensional Photonic Crystals with Active Lattice Points,” Jpn. J. Appl. Phys. 37(Part 2, No. 5B), L565–L567 (1998). [CrossRef]
  25. H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, New Jersey, 1984).
  26. L. A. Coldren, and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).
  27. L. D. Landau, and E. M. Lifshitz, Electrodynamics of Continuum Media (Pergamon, New York, 1984).
  28. R. J. Glauber and M. Lewenstein, “Quantum optics of dielectric media,” Phys. Rev. A 43(1), 467–491 (1991). [CrossRef] [PubMed]
  29. T. A. B. Kennedy and E. M. Wright, “Quantization and phase-space methods for slowly varying optical fields in a dispersive nonlinear medium,” Phys. Rev. A 38(1), 212–221 (1988). [CrossRef] [PubMed]
  30. P. D. Drummond and M. Hillery, “Quantum theory of dispersive electromagnetic modes,” Phys. Rev. A 59(1), 691–707 (1999). [CrossRef]
  31. Y. Jiang and M. Liu, “Electromagnetic force in dispersive and transparent media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(5), 6685–6694 (1998). [CrossRef]
  32. E. A. Hinds, “Perturbative cavity quantum electrodynamics,” in Cavity Quantum Electrodynamics, P. R. Berman, ed. (Academic, New York, 1994).
  33. H. Kuhn, “Classical aspects of energy transfer in molecular systems,” J. Chem. Phys. 53(1), 101–108 (1970). [CrossRef]
  34. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University Press, New Jersey, 1995).
  35. A. Chutinan, K. Ishihara, T. Asano, M. Fujita, and S. Noda, “Theoretical analysis on light-extraction efficiency of organic light-emitting diodes using FDTD and mode-expansion methods,” Org. Electron. 6(1), 3–9 (2005). [CrossRef]
  36. Y. Xu, R. K. Lee, and A. Yariv, “Quantum analysis and the classical analysis of spontaneous emission in a microcavity,” Phys. Rev. A 61(3), 033807 (2000). [CrossRef]
  37. Y. Xu, R. K. Lee, and A. Yariv, “Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide,” J. Opt. Soc. Am. B 17(3), 387–400 (2000). [CrossRef]
  38. J. K. S. Poon and A. Yariv, “Active coupled-resonator optical waveguides. I. Gain enhancement and noise,” J. Opt. Soc. Am. B 24(9), 2378–2388 (2007). [CrossRef]
  39. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Full photonic band gap for surface modes in the visible,” Phys. Rev. Lett. 77(13), 2670–2673 (1996). [CrossRef] [PubMed]
  40. H. Iwase, D. Englund, and J. Vučković, “Spontaneous emission control in high-extraction efficiency plasmonic crystals,” Opt. Express 16(1), 426–434 (2008). [CrossRef] [PubMed]
  41. S. D. Liu, M. T. Cheng, Z. J. Yang, and Q. Q. Wang, “Surface plasmon propagation in a pair of metal nanowires coupled to a nanosized optical emitter,” Opt. Lett. 33(8), 851–853 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited