OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16840–16848

High-aspect ratio nanochannel formation by single femtosecond laser pulses

Jeffrey F. Herbstman and Alan J. Hunt  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 16840-16848 (2010)
http://dx.doi.org/10.1364/OE.18.016840


View Full Text Article

Enhanced HTML    Acrobat PDF (2112 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Single femtosecond pulsed laser damage can be confined radially to regions smaller than the focus spot size due to the highly nonlinear mechanisms for energy absorption and ablation in transparent dielectrics. Along the propagation axis, however, we show that channels can be machined much deeper than the Rayleigh range of the laser focus. Using focused ion beam cross sections and acetate imprints, we analyze these channels and show that spherical aberration is not the primary source for this elongated damage, which is likely caused by microscale filamentation.

© 2010 OSA

OCIS Codes
(260.5950) Physical optics : Self-focusing
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(350.3390) Other areas of optics : Laser materials processing
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Laser Microfabrication

History
Original Manuscript: July 1, 2010
Manuscript Accepted: July 13, 2010
Published: July 23, 2010

Citation
Jeffrey F. Herbstman and Alan J. Hunt, "High-aspect ratio nanochannel formation by single femtosecond laser pulses," Opt. Express 18, 16840-16848 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-16840


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Ke, E. F. Hasselbrink, and A. J. Hunt, “Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates,” Anal. Chem. 77(16), 5083–5088 (2005). [CrossRef] [PubMed]
  2. S. Lee, J. L. Bull, and A. J. Hunt, “Acoustic limitations on the efficiency of machining by femtosecond laser-induced optical breakdown,” Appl. Phys. Lett. 91(2), 023111 (2007). [CrossRef]
  3. D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys., A Mater. Sci. Process. 79(3), 605–612 (2004). [CrossRef]
  4. A. Marcinkevi Ius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26(5), 277–279 (2001). [CrossRef]
  5. C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26(2), 93–95 (2001). [CrossRef]
  6. J. D. Uram, K. Ke, A. J. Hunt, and M. Mayer, “Submicrometer pore-based characterization and quantification of antibody-virus interactions,” Small 2(8-9), 967–972 (2006). [CrossRef] [PubMed]
  7. A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003). [CrossRef]
  8. P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of Submicron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114(1-2), 106–110 (1995). [CrossRef]
  9. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, and Y. Y. Jiang, “Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses,” Opt. Lett. 26(23), 1912–1914 (2001). [CrossRef]
  10. S. I. Kudryashov, G. Mourou, A. Joglekar, J. F. Herbstman, and A. J. Hunt, “Nanochannels fabricated by high-intensity femtosecond laser pulses on dielectric surfaces,” Appl. Phys. Lett. 91(14), 141111 (2007). [CrossRef]
  11. Y. V. White, X. X. Li, Z. Sikorski, L. M. Davis, and W. Hofmeister, “Single-pulse ultrafast-laser machining of high aspect nano-holes at the surface of SiO2,” Opt. Express 16(19), 14411–14420 (2008). [CrossRef] [PubMed]
  12. E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser processing,” Appl. Phys. Lett. 87(17), 171103 (2005). [CrossRef]
  13. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep., Phys. Lett. 441, 47–189 (2007).
  14. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005). [CrossRef]
  15. C. B. Schaffer, A. O. Jamison, and E. Mazur, “Morphology of femtosecond laser-induced structural changes in bulk transparent materials,” Appl. Phys. Lett. 84(9), 1441–1443 (2004). [CrossRef]
  16. Y. R. Shen, Principles of Nonlinear Optics (J. Wiley, 1984).
  17. W. Liu, S. Petit, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Intensity clamping of a femtosecond laser pulse in condensed matter,” Opt. Commun. 202(1-3), 189–197 (2002). [CrossRef]
  18. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003). [CrossRef] [PubMed]
  19. J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88(18), 183113 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited