OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 16868–16882

Physical human model eye and methods of its use to analyse optical performance of soft contact lenses

Ravi C Bakaraju, Klaus Ehrmann, Darrin Falk, Arthur Ho, and Eric Papas  »View Author Affiliations

Optics Express, Vol. 18, Issue 16, pp. 16868-16882 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (4707 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A bench-top physical model eye that closely replicates both anatomical and optical properties of an average human eye was designed and constructed. The cornea was sourced from a flouro-polymer with refractive index (RI) of 1.376 and crystalline lenses were made of Boston RGP polymers, EO and Equalens II, with an equivalent RI of 1.429 and 1.423 respectively. These materials served to make crystalline lens components of different age groups and accommodative states. De-Ionized water, with RI of 1.334 represented both aqueous and vitreous humor. The complementary metal-oxide sensor of a PixelLink digital camera with a resolution of 5MP and a 2.2µm pixel pitch, hosted on a motor-base, served as the ‘acting’ retina. The translation and rotary functions of the motor-base facilitated the simulation of different states of ametropia and assessment of peripheral visual function, respectively. We validated one of its configurations to suit normal viewing conditions and results from the on and off-axis optical quality measurements are presented. As a demonstration of potential practical uses, several corrective soft contact lenses were placed on the model eye and their optical performance evaluated.

© 2010 OSA

OCIS Codes
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.7325) Vision, color, and visual optics : Visual optics, metrology
(330.7326) Vision, color, and visual optics : Visual optics, modeling
(330.7327) Vision, color, and visual optics : Visual optics, ophthalmic instrumentation

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: April 14, 2010
Revised Manuscript: July 9, 2010
Manuscript Accepted: July 15, 2010
Published: July 23, 2010

Virtual Issues
Vol. 5, Iss. 12 Virtual Journal for Biomedical Optics

Ravi C Bakaraju, Klaus Ehrmann, Darrin Falk, Arthur Ho, and Eric Papas, "Physical human model eye and methods of its use to analyse optical performance of soft contact lenses," Opt. Express 18, 16868-16882 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Patel, M. Fakhry, and J. L. Alió, “Objective assessment of aberrations induced by multifocal contact lenses in vivo,” CLAO J. 28(4), 196–201 (2002). [PubMed]
  2. W. Donnelly, “The Advanced Human Eye Model (AHEM): a personal binocular eye modeling system inclusive of refraction, diffraction, and scatter,” J. Refract. Surg. 24(9), 976–983 (2008). [PubMed]
  3. H. L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14(8), 1684–1695 (1997). [CrossRef]
  4. I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16(8), 1881–1891 (1999). [CrossRef]
  5. D. A. Atchison, “Optical models for human myopic eyes,” Vision Res. 46(14), 2236–2250 (2006). [CrossRef] [PubMed]
  6. R. C. Bakaraju, K. Ehrmann, E. Papas, and A. Ho, “Finite schematic eye models and their accuracy to in-vivo data,” Vision Res. 48(16), 1681–1694 (2008). [CrossRef] [PubMed]
  7. ISO11979–2, “Ophthalmic implants-Intraocular lenses-Part 2: optical properties and test methods,” (International Organization for Standardization, 1999).
  8. S. Norrby, P. Piers, C. Campbell, and M. van der Mooren, “Model eyes for evaluation of intraocular lenses,” Appl. Opt. 46(26), 6595–6605 (2007). [CrossRef] [PubMed]
  9. P. G. Gobbi, F. Fasce, S. Bozza, and R. Brancato, “Optomechanical eye model with imaging capabilities for objective evaluation of intraocular lenses,” J. Cataract Refract. Surg. 32(4), 643–651 (2006). [CrossRef] [PubMed]
  10. S. Pieh, W. Fiala, A. Malz, and W. Stork, “In vitro strehl ratios with spherical, aberration-free, average, and customized spherical aberration-correcting intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 50(3), 1264–1270 (2008). [CrossRef] [PubMed]
  11. J. Shen and L. N. Thibos, “Measuring ocular aberrations and image quality in peripheral vision with a clinical wavefront aberrometer,” Clin. Exp. Optom. 92(3), 212–222 (2009). [CrossRef] [PubMed]
  12. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31(19), 3594–3600 (1992). [CrossRef] [PubMed]
  13. ZEMAX, “Focus Software Inc,” (Bellevue, WA, USA, 2009).
  14. A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A 24(8), 2157–2174 (2007). [CrossRef]
  15. A. V. Goncharov, M. Nowakowski, M. T. Sheehan, and C. Dainty, “Reconstruction of the optical system of the human eye with reverse ray-tracing,” Opt. Express 16(3), 1692–1703 (2008). [CrossRef] [PubMed]
  16. M. Dubbelman, V. A. Sicam, and G. L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46(6-7), 993–1001 (2006). [CrossRef]
  17. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001). [CrossRef] [PubMed]
  18. M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, “The thickness of the aging human lens obtained from corrected Scheimpflug images,” Optom. Vis. Sci. 78(6), 411–416 (2001). [CrossRef] [PubMed]
  19. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res. 45(1), 117–132 (2005). [CrossRef]
  20. M. Dubbelman, G. L. Van der Heijde, H. A. Weeber, and G. F. Vrensen, “Changes in the internal structure of the human crystalline lens with age and accommodation,” Vision Res. 43(22), 2363–2375 (2003). [CrossRef] [PubMed]
  21. M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand. 80(4), 379–383 (2002). [CrossRef] [PubMed]
  22. C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005). [CrossRef] [PubMed]
  23. I. Brunette, J. M. Bueno, M. Parent, H. Hamam, and P. Simonet, “Monochromatic aberrations as a function of age, from childhood to advanced age,” Invest. Ophthalmol. Vis. Sci. 44(12), 5438–5446 (2003). [CrossRef] [PubMed]
  24. H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, “A population study on changes in wave aberrations with accommodation,” J. Vis. 4(4), 272–280 (2004). [CrossRef] [PubMed]
  25. H. Radhakrishnan and W. N. Charman, “Age-related changes in ocular aberrations with accommodation,” J. Vis. 7(7), 11–21, 1–21 (2007). [CrossRef] [PubMed]
  26. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19(12), 2329–2348 (2002). [CrossRef]
  27. N. A. McBrien and D. W. Adams, “A longitudinal investigation of adult-onset and adult-progression of myopia in an occupational group. Refractive and biometric findings,” Invest. Ophthalmol. Vis. Sci. 38(2), 321–333 (1997). [PubMed]
  28. S. A. Read, M. J. Collins, L. G. Carney, and R. J. Franklin, “The topography of the central and peripheral cornea,” Invest. Ophthalmol. Vis. Sci. 47(4), 1404–1415 (2006). [CrossRef] [PubMed]
  29. D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 29–1–20 (2008). [CrossRef] [PubMed]
  30. M. Dubbelman, R. G. van der Heijde, and H. A. Weeber, “Comment on “Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study”,” J. Opt. Soc. Am. A 22(6), 1216–1218, discussion 1219–1220 (2005). [CrossRef]
  31. N. López-Gil, V. Fernández-Sánchez, R. Legras, R. Montés-Micó, F. Lara, and J. L. Nguyen-Khoa, “Accommodation-related changes in monochromatic aberrations of the human eye as a function of age,” Invest. Ophthalmol. Vis. Sci. 49(4), 1736–1743 (2008). [CrossRef] [PubMed]
  32. S. Plainis, H. S. Ginis, and A. Pallikaris, “The effect of ocular aberrations on steady-state errors of accommodative response,” J. Vis. 5(5), 466–477 (2005). [CrossRef] [PubMed]
  33. V. A. Sicam, M. Dubbelman, and R. G. van der Heijde, “Spherical aberration of the anterior and posterior surfaces of the human cornea,” J. Opt. Soc. Am. A 23(3), 544–549 (2006). [CrossRef]
  34. G. Smith, D. A. Atchison, D. R. Iskander, C. E. Jones, and J. M. Pope, “Mathematical models for describing the shape of the in vitro unstretched human crystalline lens,” Vision Res. 49(20), 2442–2452 (2009). [CrossRef] [PubMed]
  35. C. W. Oyster, The Human Eye; Structure and Function (Sinauer Associates, Sunderland, MA 1999). [PubMed]
  36. R. E. Bedford and G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47(6), 564–565 (1957). [CrossRef] [PubMed]
  37. E. S. Bennett, “Contact lens correction of presbyopia,” Clin. Exp. Optom. 91(3), 265–278 (2008). [CrossRef] [PubMed]
  38. D. A. Atchison, and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Oxford, 2000).
  39. E. Dalimier and C. Dainty, “Use of a customized vision model to analyze the effects of higher-order ocular aberrations and neural filtering on contrast threshold performance,” J. Opt. Soc. Am. A 25(8), 2078–2087 (2008). [CrossRef]
  40. D. A. Atchison, N. Pritchard, S. D. White, and A. M. Griffiths, “Influence of age on peripheral refraction,” Vision Res. 45(6), 715–720 (2005). [CrossRef] [PubMed]
  41. R. C. Bakaraju, K. Ehrmann, A. Ho, and E. B. Papas, “Pantoscopic tilt in spectacle-corrected myopia and its effect on peripheral refraction,” Ophthalmic Physiol. Opt. 28(6), 538–549 (2008). [CrossRef] [PubMed]
  42. R. Calver, H. Radhakrishnan, E. Osuobeni, and D. O’Leary, “Peripheral refraction for distance and near vision in emmetropes and myopes,” Ophthalmic Physiol. Opt. 27(6), 584–593 (2007). [CrossRef] [PubMed]
  43. W. N. Charman and J. A. Jennings, “Longitudinal changes in peripheral refraction with age,” Ophthalmic Physiol. Opt. 26(5), 447–455 (2006). [CrossRef] [PubMed]
  44. W. N. Charman, J. Mountford, D. A. Atchison, and E. L. Markwell, “Peripheral refraction in orthokeratology patients,” Optom. Vis. Sci. 83(9), 641–648 (2006). [CrossRef] [PubMed]
  45. J. Tabernero and F. Schaeffel, “Fast scanning photoretinoscope for measuring peripheral refraction as a function of accommodation,” J. Opt. Soc. Am. A 26(10), 2206–2210 (2009). [CrossRef]
  46. J. Tabernero, D. Vazquez, A. Seidemann, D. Uttenweiler, and F. Schaeffel, “Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction,” Vision Res. 49(17), 2176–2186 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited