OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 16 — Aug. 2, 2010
  • pp: 17220–17238

Multi-level multi-thermal-electron FDTD simulation of plasmonic interaction with semiconducting gain media: applications to plasmonic amplifiers and nano-lasers

X. Chen, B. Bhola, Y. Huang, and S. T. Ho  »View Author Affiliations


Optics Express, Vol. 18, Issue 16, pp. 17220-17238 (2010)
http://dx.doi.org/10.1364/OE.18.017220


View Full Text Article

Enhanced HTML    Acrobat PDF (6844 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Interactions between a semiconducting gain medium and confined plasmon-polaritons are studied using a multilevel multi-thermal-electron finite-difference time-domain (MLMTE-FDTD) simulator. We investigated the amplification of wave propagating in a plasmonic metal-semiconductor-metal (MSM) waveguide filled with semiconductor gain medium and obtained the conditions required to achieve net optical gain. The MSM gain waveguide is used to form a plasmonic semiconductor nano-ring laser(PSNRL) with an effective mode volume of 0.0071μm3, which is about an order of magnitude smaller than the smallest demonstrated integrated photonic crystal based laser cavities. The simulation shows a lasing threshold current density of 1kA/cm2 for a 300nm outer diameter ring cavity with 80nm-wide ring. This current density can be realistically achieved in typical III-V semiconductor, which shows the experimental feasibility of the proposed PSNRL structure.

© 2010 OSA

OCIS Codes
(140.3560) Lasers and laser optics : Lasers, ring
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 27, 2010
Revised Manuscript: June 20, 2010
Manuscript Accepted: June 24, 2010
Published: July 29, 2010

Citation
X. Chen, B. Bhola, Y. Huang, and S. T. Ho, "Multi-level multi-thermal-electron FDTD simulation of plasmonic interaction with semiconducting gain media: applications to plasmonic amplifiers and nano-lasers," Opt. Express 18, 17220-17238 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-17220


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004). [CrossRef] [PubMed]
  3. A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, “Enhanced nonlinear optical conversion from a periodically nanostructured metal film,” Opt. Lett. 28(6), 423–425 (2003). [CrossRef] [PubMed]
  4. S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997). [CrossRef] [PubMed]
  5. R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Near-field excitation of nanoantenna resonance,” Opt. Express 15(21), 13682–13688 (2007). [CrossRef] [PubMed]
  6. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67(20), 205402 (2003). [CrossRef]
  7. M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B 86(3), 455–460 (2007). [CrossRef]
  8. S. W. Chang, C. Y. A. Ni, and S. L. Chuang, “Theory for bowtie plasmonic nanolasers,” Opt. Express 16(14), 10580–10595 (2008). [CrossRef] [PubMed]
  9. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003). [CrossRef] [PubMed]
  10. N. Del Fatti, F. Vallee, C. Flytzanis, Y. Hamanaka, and A. Nakamura, “Electron dynamics and surface plasmon resonance non-linearities in metal nanoparticles,” Chem. Phys. 251(1-3), 215–226 (2000). [CrossRef]
  11. X. Luo and T. Ishihara, “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12(14), 3055–3065 (2004). [CrossRef] [PubMed]
  12. L. E. Brus, and A. Nitzan, “Chemical processing using electromagnetic field enhancement,” U. S. Patent no.: 4481091 (1983).
  13. Z. Yu, G. Veronis, M. L. Brongersma, and S. Fan, “Design of mid-infrared photodetectors enhanced by surface plasmons on grating structures,” Proc. SPIE, 6475 (2007).
  14. V. M. Shalaev, “Optical negative index metamaterials,” Nat. Photonics 1(1), 41–48 (2007). [CrossRef]
  15. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007). [CrossRef]
  16. D. O. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005). [CrossRef] [PubMed]
  17. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96(9), 097401 (2006). [CrossRef] [PubMed]
  18. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  19. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004). [CrossRef] [PubMed]
  20. D. K. Gramotnev and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface,” Appl. Phys. Lett. 85(26), 6323 (2004). [CrossRef]
  21. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668 (2003). [CrossRef]
  22. A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, “Single-mode surface-plasmon laser,” Appl. Phys. Lett. 76(16), 2164 (2000). [CrossRef]
  23. R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, and A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5μm and 24μm wavelengths,” Appl. Phys. Lett. 78(18), 2620 (2001). [CrossRef]
  24. I. Protsenko, A. Uskov, O. Zaimidoroga, V. Samoilov, and E. O’Reilly, “Dipole nanolaser,” Phys. Rev. A 71(6), 063812 (2005). [CrossRef]
  25. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008). [CrossRef]
  26. S. W. Chang, C. Y. A. Ni, and S. L. Chuang, “Theory for bowtie plasmonic nanolasers,” Opt. Express 16(14), 10580–10595 (2008). [CrossRef] [PubMed]
  27. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  28. Y. Huang and S. T. Ho, “Computational model of solid-state, molecular, or atomic media for FDTD simulation based on a multi-level multi-electron system governed by Pauli exclusion and Fermi-Dirac thermalization with application to semiconductor photonics,” Opt. Express 14(8), 3569–3587 (2006). [CrossRef] [PubMed]
  29. The simulation takes approximately 96 hours on single Dell server with 2 AMD® Opteron 2350 Quad-core 2.0 GHz and 8GB memory.
  30. M. Okoniewski, M. Mrozowski, and M. A. Stuchly, “Simple treatment of multi-term dispersion in FDTD,” IEEE Microwave Guide Wave Lett. 7, 121 (1997). [CrossRef]
  31. M. Okoniewski and E. Pkoniewska, “Drude dispersion in ADE revisited,” IEE Electron. Lett. 42 (2006).
  32. One may question the validity of the effective refractive index approximation since the effect of the lateral plasmonic waveguiding is stronger than the “planar dielectric waveguiding”. Exact waveguide mode calculation is expected to give some correction but it is not the focus of this paper and can be addressed separately.
  33. The effective refractive index of the semiconductor structure will obviously be a function of the thickness of the semiconductor layer. Appropriate value shall be used in practice depending on the thickness. Here, for simulation illustration purpose, we take it to be n = 3.4.
  34. F. M. Kong, K. Li, B. I. Wu, H. Huang, H. S. Chen, and J. A. Kong, “Propagation properties of the SPP modes in nanoscale narrow metallic gap, channel, and hole geometries,” Prog. Electromag. Res. PIER 76, 449–466 (2007). [CrossRef]
  35. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–20 (1983). [CrossRef] [PubMed]
  36. Y. Kurokawa and H. T. Miyazaki, “Metal-Insulator-Metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75(3), 035411 (2007). [CrossRef]
  37. S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16(4), 2676–2684 (2008). [CrossRef] [PubMed]
  38. S. A. Maier, “Gain assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides,” Opt. Commun. 258(2), 295–299 (2006). [CrossRef]
  39. L. A. Coldren, and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley Interscience, New York, NY, 1995).
  40. D. B. Li and C. Z. Ning, “Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure,” Phys. Rev. B 80(15), 153304 (2009). [CrossRef]
  41. A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett. 33(11), 1261–1263 (2008). [CrossRef] [PubMed]
  42. www.Lumerical.com , Lumerical Solutions Inc., Vancouver, British Columbia, Canada.
  43. M. M. Lončar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81(15), 2680 (2002). [CrossRef]
  44. H. M. Ng, D. Doppalapudi, E. Iliopoulos, and T. D. Moustakas, “Distributed Bragg reflectors based on AlN/GaN multilayers,” Appl. Phys. Lett. 74(7), 1036 (1999). [CrossRef]
  45. X. Liu, W. Fang, Y. Huang, X. H. Wu, S. T. Ho, H. Cao, and R. P. H. Chang, “Optically pumped ultraviolet microdisk laser on silicon substrate,” Appl. Phys. Lett. 84(14), 2488 (2004). [CrossRef]
  46. K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal micro-cavity,” Appl. Phys. Lett. 83(10), 1915 (2003). [CrossRef]
  47. N. W. Ashcroft, and N. D. Mermin, Solid State Physics, Brooks-Cole (1976).
  48. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007). [CrossRef]
  49. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999). [CrossRef] [PubMed]
  50. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005). [CrossRef] [PubMed]
  51. M. M. Sigalas and R. Biswas, “Slot defect in three-dimensional photonic crystals,” Phys. Rev. B 78(3), 033101 (2008). [CrossRef]
  52. L. Tang and T. Yoshie, “Monopole woodpile photonic crystal modes for light-matter interaction and optical trapping,” Opt. Express 17(3), 1346–1351 (2009). [CrossRef] [PubMed]
  53. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003). [CrossRef] [PubMed]
  54. Energy density at the steady state in the cavity is determined by: η=0.5⋅∫S(ε(r¯)⋅|E(r¯)|2+μ(r¯)⋅|H(r¯)|2)⋅dr¯(S is the area of the lasing cavity).
  55. The area of lasing cavity is calculated by:S=π⋅(dOD/ 2)2−(dID/2)2] = 5.48 × 10–10 cm2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited