OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 17776–17787

Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum

Xiaojin Zhao, Amine Bermak, Farid Boussaid, and Vladimir G. Chigrinov  »View Author Affiliations

Optics Express, Vol. 18, Issue 17, pp. 17776-17787 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2461 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we describe the design, modeling, fabrication, and optical characterization of the first micropolarimeter array enabling full Stokes polarization imaging in visible spectrum. The proposed micropolarimeter is fabricated by patterning a liquid-crystal (LC) layer on top of a visible-regime metal-wire-grid polarizer (MWGP) using ultraviolet sensitive sulfonic-dye-1 as the LC photoalignment material. This arrangement enables the formation of either micrometer-scale LC polarization rotators, neutral density filters or quarter wavelength retarders. These elements are in turn exploited to acquire all components of the Stokes vector, which describes all possible polarization states of light. Reported major principal transmittance of 75% and extinction ratio of 1100 demonstrate that the MWGP’s superior optical characteristics are retained. The proposed liquid-crystal micropolarimeter array can be integrated on top of a complementary metal-oxide-semiconductor (CMOS) image sensor for real-time full Stokes polarization imaging.

© 2010 Optical Society of America

OCIS Codes
(110.5220) Imaging systems : Photolithography
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(230.5440) Optical devices : Polarization-selective devices
(160.5335) Materials : Photosensitive materials

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: June 3, 2010
Revised Manuscript: July 25, 2010
Manuscript Accepted: July 26, 2010
Published: August 3, 2010

Xiaojin Zhao, Amine Bermak, Farid Boussaid, and Vladimir G. Chigrinov, "Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum," Opt. Express 18, 17776-17787 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. C. Giakos, “Multifusion, Multispectral, Optical Polarimetric Imaging Sensing Principles,” IEEE Trans. Instrum. Meas. 55, 1628–1633 (2006). [CrossRef]
  2. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006). [CrossRef] [PubMed]
  3. M. P. Rowe, E. N. Pugh, Jr., J. Scott Tyo, and N. Engheta, “Polarization-difference imaging: a biologically inspired technique for imaging in scattering media,” Opt. Lett. 20, 608–610 (1995). [CrossRef] [PubMed]
  4. S. Lin, K. M. Yemelyanov, E. N. Pugh, Jr., and N. Engheta, “Polarization-based and specular-reflection-based noncontact latent fingerprint imaging and lifting,” J. Opt. Soc. Am. A 23, 2137–2152 (2006). [CrossRef]
  5. G. D. Gilbert and J. C. Pernicka, “Improvement of underwater visibility by reduction of backscatter with a circular polarization technique,” Appl. Opt. 6, 741–746 (1967). [CrossRef] [PubMed]
  6. G. D. Gilbert, “The effects of particle size on contrast improvement by polarization discrimination for underwater targets,” Appl. Opt. 9, 421–428 (1970). [CrossRef] [PubMed]
  7. J. D. Barter, H. R. Thompson, Jr., and C. L. Richardson, “Visible-regime polarimetric imager: a fully polarimetric, real-time imaging system,” Appl. Opt. 42, 1620–1628 (2003). [CrossRef] [PubMed]
  8. J. D. Barter and P. H. Y. Lee, “Visible Stokes polarimetric imager,” U.S. Patent 6,122,404 (2000).
  9. F. Goudail, P. Terrier, Y. Takakura, L. Bigue, F. Galland, and V. DeVlaminck, “Target detection with a liquidcrystal-based passive Stokes polarimeter,” Appl. Opt. 43, 274–282 (2004). [CrossRef] [PubMed]
  10. N. J. Pust and J. A. Shaw, “Dual-field imaging polarimeter using liquid crystal variable retarders,” Appl. Opt. 45, 5470–5478 (2006). [CrossRef] [PubMed]
  11. A. G. Andreou and Z. K. Kalayjian, “Polarization Imaging: Principles and Integrated Polarimeters,” IEEE Sens. J. 2, 566–576 (2002). [CrossRef]
  12. . S. M. Faris, “Methods for manufacturing micropolarizers,” U.S. Patent 5,327,285 (1994).
  13. V. Gruev, A. Ortu, N. Lazarus, J. Van de Spiegel, and N. Engheta, “Fabrication of a Dual-Tier Thin Film Micro Polarization Array,” Opt. Express 15, 4994–5007 (2007). [CrossRef] [PubMed]
  14. V. Gruev, J. V. Spiegel, and N. Engheta, “Image SensorWith Focal Plane Polarization Sensitivity,” in Proceedings of IEEE International Symposium on Circuits and Systems, pp. 1028–1031 (2008).
  15. J. Guo and D. Brady, “Fabrication of thin-film micropolarizer arrays for visible imaging polarimetry,” Appl. Opt. 39, 1486–1492 (2000). [CrossRef]
  16. M. Momeni and A. H. Titus, “An analog VLSI chip emulating polarization vision of octopus retina,” IEEE Trans. Neur. Netw. 17, 222–232 (2006). [CrossRef]
  17. C. K. Harnett and H. G. Craighead, “Liquid-crystal micropolarizer array for polarization-difference imaging,” Appl. Opt. 41, 1291–1296 (2002). [CrossRef] [PubMed]
  18. X. Zhao, A. Bermak, F. Boussaid, T. Du, and V. G. Chigrinov, “High-resolution photoaligned liquid-crystal micropolarizer array for polarization imaging in visible spectrum,” Opt. Lett. 34, 3619–3621 (2009). [CrossRef] [PubMed]
  19. D. Goldstein, Polarized Light (Marcel Dekker, New York, 2003). [CrossRef]
  20. S. T. Tang and H. S. Kwok, “Characteristic parameters of liquid crystal cells and their measurements,” J. Display Technol. 2, 26–31 (2006). [CrossRef]
  21. V. Chigrinov, E. Prudnikova, V. Kozenkov, H. Kwok, H. Akiyama, T. Kawara, H. Takada, and H. Takatsu, “Synthesis and properties of azo dye aligning layers for liquid crystal cells,” Liq. Cryst. 29, 1321–1327 (2002). [CrossRef]
  22. . http://www.moxtek.com/optics/visible_light.html

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited