OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 17805–17818

Particle-swarm-optimization-assisted rate equation modeling of the two-peak emission behavior of non-stoichiometric CaAlxSi(7-3x)/4N3:Eu2+ phosphors

Yoon Won Jung, Bonghyun Lee, Satendra Pal Singh, and Kee-Sun Sohn  »View Author Affiliations


Optics Express, Vol. 18, Issue 17, pp. 17805-17818 (2010)
http://dx.doi.org/10.1364/OE.18.017805


View Full Text Article

Enhanced HTML    Acrobat PDF (1476 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We examined non-stoichiometric CaAlxSi(7-3x)/4N3:Eu2+ phosphors that were intentionally prepared with x = 0.7 ~1.3 to identify the origin of the deconvoluted Gaussian components that constitute the emission spectra of stoichiometric CaAlSiN3:Eu2+ phosphors. The Al/Si molar ratio around the Eu2+ activator caused the deconvoluted Gaussian peaks. The Eu2+ activator sites in Al-rich environments gave rise to the lower-energy emission peak, while those in Si-rich environments were related to the higher-energy emission peaks. Active energy transfer from the Eu2+ activator site in the Si-rich environment to the Eu2+ activator site in the Al-rich environment was confirmed. Particle swarm optimization was employed to estimate the nine unknown decision parameters that control the energy transfer process. All of the decision parameters were estimated within the range of reasonable values.

© 2010 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(250.5230) Optoelectronics : Photoluminescence
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Materials

History
Original Manuscript: June 16, 2010
Revised Manuscript: July 8, 2010
Manuscript Accepted: July 20, 2010
Published: August 3, 2010

Citation
Yoon Won Jung, Bonghyun Lee, Satendra Pal Singh, and Kee-Sun Sohn, "Particle-swarm-optimization-assisted rate equation modeling of the two-peak emission behavior of non-stoichiometric CaAlxSi(7-3x)/4N3:Eu2+ phosphors," Opt. Express 18, 17805-17818 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-17805


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Kulshreshtha, J. H. Kwak, Y.-J. Park, and K.-S. Sohn, “Photoluminescent and decay behaviors of Mn2+ and Ce2+ co-activated MgSiN2 phosphors for use in LED applications,” Opt. Lett. 34(6), 794–796 (2009), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-6-794 . [CrossRef] [PubMed]
  2. T. Suehiro, H. Onuma, N. Hirosaki, R.-J. Xie, T. Sato, and A. Miyamoto, “Powder Synthesis of Y-α-SiAlON and Its Potential as a Phosphor Host,” J. Phys. Chem. C 114(2), 1337–1342 (2010). [CrossRef]
  3. C. Zhang, H. Lian, D. Kong, S. Huang, and J. Lin, “Stuctural and Bluish-White Luminescent Properties of Li+-Doped BPO4 as a Potential Environmentally Friendly Phosphor Material,” J. Phys. Chem. C 113(4), 1580–1588 (2009). [CrossRef]
  4. X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, and N. Kijima, “Preparation of CaAlSiN3:Eu2+ phosphors by the Self-Propagating High-Temperature Synthesis and Their Luminescent Properties,” Chem. Mater. 19(18), 4592–4599 (2007). [CrossRef]
  5. Y. Q. Li, N. Hirosaki, R.-J. Xie, T. Takeda, and M. Mitomo, “Yellow-Orange-Emitting CaAlSiN3:Ce3+ phosphor: Structure, Photoluminescence, and Application in White LEDs,” Chem. Mater. 20(21), 6704–6714 (2008). [CrossRef]
  6. K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Tamamoto, “Luminescence Properties of a Red Phosphor, CaAlSiN3:Eu2+, for White Light-Emitting Diodes,” Electrochem. Soc 9, H22–H25 (2006).
  7. H. Watanabe, H. Yamane, and N. Kijima, “Crystal structure and luminescence of Sr0.99Eu0.01AlSiN3,” J. Solution Chem. 181, 1848–1852 (2008).
  8. J. Li, T. Watanabe, N. Sakamoto, H. Wada, T. Setoyama, and M. Yoshimura, “Synthesis of a Multinary Nitride, Eu-Doped CaAlSiN3, from Alloy at Low Temperatures,” Chem. Mater. 20(6), 2095–2105 (2008). [CrossRef]
  9. K. Uheda, N. Hirosaki, and H. Yamamoto, “Host lattice materials in the system Ca3N2-AlN-Si3N4 for white light emitting diode,” Phys. Status Solidi 203(11), 2712–2717 (2006). [CrossRef]
  10. J. Li, T. Watanabe, H. Wada, T. Setoyama, and M. Yoshimura, “Synthesis of Eu-Doped CaAlSiN3 from Ammonometallates: Effects of Sodium Content and Pressure,” J. Am. Ceram. Soc. 92(2), 344–349 (2009). [CrossRef]
  11. H. Watanabe, H. Wada, K. Seki, M. Itou, and N. Kijima, “Synthetic Method and Luminescence Properties of SrxCa1-xAlSiN3:Eu2+ Mixed Nitride Phosphors,” J. Electrochem. Soc. 155(3), F31–F36 (2008). [CrossRef]
  12. H. Watanabe and N. Kijima, “Crystal structure and luminescence properties of SrxCa1-xAlSiN3:Eu2+ mixed nitride phosphor,” J. Alloy. Comp. 475(1-2), 434–439 (2009). [CrossRef]
  13. S. Lee, and K.-S. Sohn, “Effect of inhomogeneous broadening on time-resolved photoluminescence in CaAlSiN3:Eu2+,” Opt. Lett. 35, 1004–1006 (2010).
  14. R. C. Eberhart, and J. Kennedy, In A new optimizer using particle swarm theory (Proc IEEE Int Conf on Neural networks, Nagoya, 1995) p. 39–43.
  15. J. Kennedy and R. C. Eberhart, In Particle swarm optimization (Proc IEEE Int Conf on Neural Networks, Perth, 1995) p. 1942–1948.
  16. J. Kennedy, In The particle swarm: Social adaption of knowledge (Proc. IEEE Int. Conf. on Evolutionary Computation, Indianapolis, 1997) p. 303–308.
  17. P. Dorenbos, L. Pierron, L. Dinca, C. W. E. van Eijk, A. Kahn-Harari, and B. Viana, "4f-5d spectroscopy of Ce3+ in CaBPO5, LiCaPO4 and Li2CaSiO4," J. Phys. Condens. Matter 15(3), 511–520 (2003). [CrossRef]
  18. P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. II. Chloride, bromide, and iodide compounds,” Phys. Rev. B 62(23), 15650–15659 (2000). [CrossRef]
  19. P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. I. Fluoride compounds,” Phys. Rev. B 62(23), 15640–15649 (2000). [CrossRef]
  20. P. Dorenbos, “Relation between Eu2+ and Ce3+ f ↔ d-transition energies in inorganic compounds,” J. Phys. Condens. Matter 15(27), 4797–4807 (2003). [CrossRef]
  21. P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. III. Oxides containing ionic complexes,” Phys. Rev. B 64(12), 125117 (2001). [CrossRef]
  22. D. Ahn, N. Shin, K. D. Park, and K.-S. Sohn, “Energy Transfer Between Activators at Different Crystallographic Sites,” J. Electrochem. Soc. 156(9), J242–J248 (2009). [CrossRef]
  23. K.-S. Sohn, S. Lee, R.-J. Xie, and N. Hirosaki, “Time-resolved photoluminescence analysis of two-peak emission behavior in Sr2Si5N8:Eu2+,” Appl. Phys. Lett. 95(12), 121903 (2009). [CrossRef]
  24. K.-S. Sohn, B. Lee, R.-J. Xie, and N. Hirosaki, “Rate-equation model for energy transfer between activators at different crystallographic sites in Sr2Si5N8:Eu2+,” Opt. Lett 34, 3427–3429 (2009). [CrossRef] [PubMed]
  25. S. O. Vásquez, “Energy transfer processes in organized media. III. A two-center model for nonhomogeneous crystals,” J. Chem. Phys. 108(2), 723–728 (1998). [CrossRef]
  26. R. Loudon, In The Quantum Theory of Light (Oxford Univ, Oxford, 1973)
  27. R. Reisfeld, E. Greenberg, R. Velapodi, and B. Barnett, “Luminescence Quantum Efficiency of Gd and Tb in Borate Glasses and the Mechanism of Energy Transfer between Them,” J. Chem. Phys. 56(4), 1698–1705 (1972). [CrossRef]
  28. H. Ebendorff-Heidepriem and Ebendorff-Heidepriem and D. Ehrt, “Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses,” Opt. Mater. 15(1), 7–25 (2000). . [CrossRef]
  29. S. O. Vásquez, “Energy transfer processes in organized media. I. A crystal model for cubic sites,” J. Chem. Phys. 104(19), 7652–7657 (1996). [CrossRef]
  30. S. O. Vásquez, “Energy transfer processes in organized media. II. Generalization of the crystal model for dipole-dipole interactions in cubic sites,” J. Chem. Phys. 106(21), 8664–8671 (1997). [CrossRef]
  31. S. O. Vásquez, “Crystal model for energy-transfer processes in organized media: Higher-order electric multipolar interations,” Phys. Rev. B 60(12), 8575–8585 (1999). [CrossRef]
  32. S. O. Vásquez, “Energy-transfer processes in quasi-bidimensional crystal arrays,” Phys. Rev. B 64(12), 125103 (2001). [CrossRef]
  33. W. E. Boyce and R. C. Diprima, In Elementry Differential Equations and Boundary Value Problems (John Wiley & Sons, 1986)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited