OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 18223–18228

In situ monitoring of the acetylene decomposition and gas temperature at reaction conditions for the deposition of carbon nanotubes using linear Raman scattering

Karla Reinhold-López, Andreas Braeuer, Nadejda Popovska, and Alfred Leipertz  »View Author Affiliations


Optics Express, Vol. 18, Issue 17, pp. 18223-18228 (2010)
http://dx.doi.org/10.1364/OE.18.018223


View Full Text Article

Enhanced HTML    Acrobat PDF (1079 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To understand the reaction mechanisms taking place by growing carbon nanotubes via the catalytic chemical vapor deposition process, a strategy to monitor in situ the gas phase at reaction conditions was developed applying linear Raman spectroscopy. The simultaneous determination of the gas temperature and composition was possible by a new strategy of the evaluation of the Raman spectra. In agreement to the well-known exothermic decomposition of acetylene, a gas temperature increase was quantified when acetylene was added to the incident flow. Information about exhaust gas recirculation and location of the maximal acetylene conversion was derived from the composition measurements.

© 2010 OSA

OCIS Codes
(290.5820) Scattering : Scattering measurements
(290.5840) Scattering : Scattering, molecules
(300.6450) Spectroscopy : Spectroscopy, Raman

ToC Category:
Spectroscopy

History
Original Manuscript: July 9, 2010
Revised Manuscript: August 6, 2010
Manuscript Accepted: August 6, 2010
Published: August 9, 2010

Citation
Karla Reinhold-López, Andreas Braeuer, Nadejda Popovska, and Alfred Leipertz, "In situ monitoring of the acetylene decomposition and gas temperature at reaction conditions for the deposition of carbon nanotubes using linear Raman scattering," Opt. Express 18, 18223-18228 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-17-18223


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354(6348), 56–58 (1991). [CrossRef]
  2. T. Belin and F. Epron, “Characterization methods of carbon nanotubes: a review,” Mater. Sci. Eng. B 119(2), 105–118 (2005). [CrossRef]
  3. K. B. K. Teo, C. Singh, M. Chhowalla, and W. I. Milne, “Catalytic synthesis of carbon nanotubes and nanofibers,” in Encyclopedia of Nanoscience and Nanotechnology (American Scientific Publishers, Stevenson Ranch, CA, USA, 2003), pp. 665–686.
  4. T. C. Schmitt, A. S. Biris, D. W. Miller, A. R. Biris, D. Lupu, S. Trigwell, and Z. U. Rahman, “Analysis of effluent gases during the CCVD growth of multi-wall carbon nanotubes from acetylene,” Carbon 44(10), 2032–2038 (2006). [CrossRef]
  5. S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single nanotube,” Nature 393(6680), 49–52 (1998). [CrossRef]
  6. C. H. See and A. T. Harris, “A Review of Carbon Nanotube Synthesis via Fluidized-Bed Chemical Vapor Deposition,” Ind. Eng. Chem. Res. 46(4), 997–1012 (2007). [CrossRef]
  7. M. Escobar, M. S. Moreno, R. J. Candal, M. C. Marchi, A. Caso, P. I. Polosecki, G. H. Rubiolo, and S. Goyanes, “Synthesis of carbon nanotubes by CVD: Effect of acetylene pressure on nanotubes characteristics,” Appl. Surf. Sci. 254(1), 251–256 (2007). [CrossRef]
  8. C. Singh, M. S. P. Shaffer, and A. H. Windle, “Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method,” Carbon 41(2), 359–368 (2003). [CrossRef]
  9. H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide,” Chem. Phys. Lett. 260(3-4), 471–475 (1996). [CrossRef]
  10. S. Esconjauregui, C. M. Whelan, and K. Maex, “The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies,” Carbon 47(3), 659–669 (2009). [CrossRef]
  11. R. T. K. Baker, “Catalytic growth of carbon filaments,” Carbon 27(3), 315–323 (1989). [CrossRef]
  12. A.-C. Dupuis, “The catalyst in the CCVD of carbon nanotubes–a review,” Prog. Mater. Sci. 50(8), 929–961 (2005). [CrossRef]
  13. G. G. Tibbetts, “Why are carbon filaments tubular?” J. Cryst. Growth 66(3), 632–638 (1984). [CrossRef]
  14. K. Liu, K. Jiang, C. Feng, Z. Chen, and S. Fan, “A growth mark method for studying growth mechanism of carbon nanotube arrays,” Carbon 43(14), 2850–2856 (2005). [CrossRef]
  15. A. Braeuer, S. R. Engel, R. F. Hankel, and A. Leipertz, “Gas mixing analysis by simultaneous Raman imaging and particle image velocimetry,” Opt. Lett. 34(20), 3122–3124 (2009). [CrossRef] [PubMed]
  16. J. Kojima and Q. V. Nguyen, “Laser pulse-stretching with multiple optical ring cavities,” Appl. Opt. 41(30), 6360–6370 (2002). [CrossRef] [PubMed]
  17. D. A. Long, Raman Spectroscopy (London, 1977).
  18. B. Schrader, Infrared and Raman Spectroscopy (Weinheim, 1995).
  19. A. Braeuer and A. Leipertz, “Two-dimensional Raman mole-fraction and temperature measurements for hydrogen-nitrogen mixture analysis,” Appl. Opt. 48(4), B57–B64 (2009). [CrossRef] [PubMed]
  20. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Cambridge, MA, 1988).
  21. R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, and R. J. Waite, “Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene,” J. Catal. 26(1), 51–62 (1972). [CrossRef]
  22. T. Tanzawa and W. C. Gardiner., “Reaction mechanism of the homogeneous thermal decomposition of acetylene,” J. Phys. Chem. 84(3), 236–239 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited