OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 17 — Aug. 16, 2010
  • pp: 18401–18406

Synthesis of ZnO nanoflowers and their wettabilities and photocatalytic properties

Xiaodong Guo, Quanzhong Zhao, Ruxin Li, Huaihai Pan, Xiaoyang Guo, Anyuan Yin, and Weilin Dai  »View Author Affiliations

Optics Express, Vol. 18, Issue 17, pp. 18401-18406 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (779 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By combing laser direct writing and hydrothermal growth, we demonstrate the growth of three-dimensional flowerlike ZnO nanostructures from aqueous solution. Our approach offers synthetic flexibility in controlling film architecture, coating texture and crystallite size. The wettability is studied by measurement of time-dependent contact angles in the as-grown samples. In addition, superior photocatalytic activity of the flowerlike ZnO nanostructures in the degradation of Rhodamine B is investigated as well. The influence factors and formation mechanism of the flowerlike ZnO nanostructures are also analyzed and discussed.

© 2010 OSA

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(240.6670) Optics at surfaces : Surface photochemistry
(160.4236) Materials : Nanomaterials

ToC Category:
Laser Microfabrication

Original Manuscript: June 1, 2010
Revised Manuscript: July 20, 2010
Manuscript Accepted: July 25, 2010
Published: August 12, 2010

Xiaodong Guo, Quanzhong Zhao, Ruxin Li, Huaihai Pan, Xiaoyang Guo, Anyuan Yin, and Weilin Dai, "Synthesis of ZnO nanoflowers and their wettabilities and photocatalytic properties," Opt. Express 18, 18401-18406 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. S. Ding, X. F. Shen, S. Gomez, H. Luo, M. Aindow, and S. L. Suib, “Hydrothermal growth of manganese dioxide into three-dimensional hierarchical nanoarchitectures,” Adv. Funct. Mater. 16(4), 549–555 (2006). [CrossRef]
  2. A. Chen, X. Peng, K. Koczkur, and B. Miller, “Super-hydrophobic tin oxide nanoflowers,” Chem. Commun. (Camb.) (17): 1964–1965 (2004). [CrossRef]
  3. B. Liu and H. C. Zeng, “Mesoscale organization of CuO nanoribbons: formation of “dandelions”,” J. Am. Chem. Soc. 126(26), 8124–8125 (2004). [CrossRef] [PubMed]
  4. S. Park, J. H. Lim, S. W. Chung, and C. A. Mirkin, “Self-assembly of mesoscopic metal-polymer amphiphiles,” Science 303(5656), 348–351 (2004). [CrossRef] [PubMed]
  5. X. Wang, J. Zhuang, Q. Peng, and Y. D. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005). [CrossRef] [PubMed]
  6. Y. P. Fang, A. W. Xu, A. M. Qin, and R. J. Yu, “Selective synthesis of hexagonal and tetragonal dysprosium orthophosphate nanorods by a hydrothermal method,” Cryst. Growth Des. 5(3), 1221–1225 (2005). [CrossRef]
  7. J. A. van Kan, A. A. Bettiol, and F. Watt, “Proton beam writing of three-dimensional nanostructures in hydrogen silsesquioxane,” Nano Lett. 6(3), 579–582 (2006). [CrossRef] [PubMed]
  8. J. W. Hsu, Z. R. Tian, N. C. Simmons, C. M. Matzke, J. A. Voigt, and J. A. Liu, “Directed spatial organization of zinc oxide nanorods,” Nano Lett. 5(1), 83–86 (2005). [CrossRef] [PubMed]
  9. S. Xu, Y. Wei, M. Kirkham, J. Liu, W. Mai, D. Davidovic, R. L. Snyder, and Z. L. Wang, “Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst,” J. Am. Chem. Soc. 130(45), 14958–14959 (2008). [CrossRef] [PubMed]
  10. Y. J. Kim, C. H. Lee, Y. J. Hong, and G. C. Yi, “Controlled selective growth of ZnO nanorod and microrod arrays on Si substrates by a wet chemical method,” Appl. Phys. Lett. 89, 163128–163130 (2006.). [CrossRef]
  11. C. A. Mirkin, “Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks,” Inorg. Chem. 39(11), 2258–2272 (2000). [CrossRef]
  12. A. Ivanisevic and C. A. Mirkin, ““Dip-Pen” nanolithography on semiconductor surfaces,” J. Am. Chem. Soc. 123(32), 7887–7889 (2001). [CrossRef] [PubMed]
  13. A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004). [CrossRef] [PubMed]
  14. Y. F. Guan and A. J. Pedraza, “Synthesis and alignment of ZnO and ZnO nanoparticles by laser-assisted chemical vapor deposition,” Nanotechnology 19(4), 045609 (2008). [CrossRef] [PubMed]
  15. Q. Z. Zhao, S. Malzer, and L. J. Wang, “Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses,” Opt. Lett. 32(13), 1932–1934 (2007). [CrossRef] [PubMed]
  16. X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, Y. Dai, B. Lu, and X. W. Sun, “Coherent linking of periodic nano-ripples on a ZnO crystal surface induced by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 94(2), 423–426 (2009). [CrossRef]
  17. F. F. Luo, B. Qian, G. Lin, J. Xu, Y. Liao, J. Song, H. Y. Sun, B. Zhu, J. R. Qiu, Q. Z. Zhao, and Z. Z. Xu, “Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser,” Opt. Express 18(6), 6262–6269 (2010). [CrossRef] [PubMed]
  18. A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40, 546–551 (1944). [CrossRef]
  19. R. Rosario, D. Gust, A. A. Garcia, M. Hayes, J. L. Taraci, J. W. Dailey, and S. T. Picraux, “Lotus effect amplifies light-induced contact angle switching,” J. Phys. Chem. B 108(34), 12640–12642 (2004). [CrossRef]
  20. L. S. Zhong, J. S. Hu, H. P. Liang, A. M. Cao, W. G. Song, and L. J. Wan, “Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment,” Adv. Mater. 18(18), 2426–2431 (2006). [CrossRef]
  21. W. N. Li, J. K. Yuan, X. F. Shen, S. Gomez-Mower, L. P. Xu, S. Sithambaram, M. Aindow, and S. L. Suib, “Hydrothermal synthesis of structure- and shape-controlled manganese oxide octahedral molecular sieve nanomaterials,” Adv. Funct. Mater. 16(9), 1247–1253 (2006). [CrossRef]
  22. Y. B. Li, Y. Bando, and D. Golberg, “MoS2 nanoflowers and their field-emission properties,” Appl. Phys. Lett. 82(12), 1962–1964 (2003). [CrossRef]
  23. J. A. Marqusee and J. Ross, “Kinetics of phase transitions: Theory of Ostwald ripening,” J. Chem. Phys. 79(1), 373–378 (1983). [CrossRef]
  24. C. W. Extrand, S. I. Moon, P. Hall, and D. Schmidt, “Superwetting of structured surfaces,” Langmuir 23(17), 8882–8890 (2007). [CrossRef] [PubMed]
  25. R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Ind. Eng. Chem. 28(8), 988–994 (1936). [CrossRef]
  26. H. K. Sun, M. Luo, W. J. Weng, K. Cheng, P. Y. Du, G. Shen, and G. R. Han, “Room-temperature preparation of ZnO nanosheets grown on Si substrates by a seed-layer assisted solution route,” Nanotechnology 19(12), 125603 (2008). [CrossRef] [PubMed]
  27. Y. O. Popov, “Evaporative deposition patterns: spatial dimensions of the deposit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036313 (2005). [CrossRef] [PubMed]
  28. J. Matos, J. Laine, and J. M. Hermann, “Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon,” Appl. Catal. B 18(3–4), 281–291 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 3 Fig. 2
Fig. 4

Supplementary Material

» Media 1: AVI (171 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited