OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 18805–18810

Tm3+-doped tellurite glasses for fiber amplifiers in broadband optical communication at 1.20 µm wavelength region

Bo Zhou, Hai Lin, and Edwin Yue-Bun Pun  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 18805-18810 (2010)
http://dx.doi.org/10.1364/OE.18.018805


View Full Text Article

Enhanced HTML    Acrobat PDF (1536 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Broadband emissions at around 1.20 and 1.46 μm wavelengths from thulium (Tm3+)-doped tellurite glasses were observed under 465 nm wavelength excitation. The 1.20 μm emission originates from the Tm3+: 1G43H4 transition, and the associated stimulated peak emission cross-section is calculated to be 0.47 × 10−20 cm2. Population inversion occurs between the 1G4 and 3H4 levels, and a positive gain band from 1.20 to 1.28 μm is achieved at relatively low Tm3+ dopant concentration. Our results suggest that this glass system is promising for optical fiber amplifiers operating at the relatively unexplored low loss 1.20 μm wavelength region.

© 2010 OSA

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(230.2285) Optical devices : Fiber devices and optical amplifiers

ToC Category:
Materials

History
Original Manuscript: July 8, 2010
Revised Manuscript: August 14, 2010
Manuscript Accepted: August 15, 2010
Published: August 18, 2010

Citation
Bo Zhou, Hai Lin, and Edwin Yue-Bun Pun, "Tm3+-doped tellurite glasses for fiber amplifiers in broadband optical communication at 1.20 µm wavelength region," Opt. Express 18, 18805-18810 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-18805


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. A. Thomas, B. I. Shraiman, P. F. Glodis, and M. J. Stephen, “Towards the clarity limit in optical fibre,” Nature 404(6775), 262–264 (2000). [CrossRef] [PubMed]
  2. K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006). [CrossRef]
  3. V. V. Dvoyrin, O. I. Medvedkov, V. M. Mashinsky, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Optical amplification in 1430-1495 nm range and laser action in Bi-doped fibers,” Opt. Express 16(21), 16971–16976 (2008). [CrossRef] [PubMed]
  4. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009). [CrossRef] [PubMed]
  5. M. Y. Sharonov, A. B. Bykov, V. Petricevic, and R. R. Alfano, “Spectroscopic study of optical centers formed in Bi-, Pb-, Sb-, Sn-, Te-, and In-doped germanate glasses,” Opt. Lett. 33(18), 2131–2133 (2008). [CrossRef] [PubMed]
  6. E. Bélanger, M. Bernier, D. Faucher, D. Côté, and R. Vallée, “High-power and widely tunable all-fiber Raman laser,” J. Lightwave Technol. 26(12), 1696–1701 (2008). [CrossRef]
  7. Z. Yang, L. Luo, and W. Chen, “The 1.23 and 1.47 μm emissions from Tm3+ in chalcogenide glasses,” J. Appl. Phys. 99(7), 076107 (2006). [CrossRef]
  8. P. Laperle, A. Chandonnet, and R. Vallee, “Photoinduced absorption in thulium-doped ZBLAN fibers,” Opt. Lett. 20(24), 2484–2486 (1995). [CrossRef] [PubMed]
  9. M. Dejneka and B. Samson, “Rare earth-doped fibers for telecommunication applications,” Mater. Res. Soc. Bull. 24, 39–45 (1999).
  10. M. Naftaly, S. Shen, and A. Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47 μm,” Appl. Opt. 39(27), 4979–4984 (2000). [CrossRef] [PubMed]
  11. L. Huang, S. Shen, and A. Jha, “Near infrared spectroscopic investigation of Tm3+-Yb3+ co-doped tellurite glasses,” J. Non-Cryst. Solids 345–346, 349–353 (2004). [CrossRef]
  12. Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm(3+)/Ho(3+) codoped tellurite fiber laser,” Opt. Lett. 33(11), 1282–1284 (2008). [CrossRef] [PubMed]
  13. B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev. 127(3), 750–761 (1962). [CrossRef]
  14. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962). [CrossRef]
  15. B. Zhou, E. Y. B. Pun, H. Lin, D. L. Yang, and L. H. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009). [CrossRef]
  16. Z. Xiao, R. Serna, F. Xu, and C. N. Afonso, “Critical seperation for efficient Tm3+-Tm3+ energy transfer evidenced in nanostructured Tm3+:Al2O3 thin films,” Opt. Lett. 33(6), 608–610 (2008). [CrossRef] [PubMed]
  17. K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73(7), 3149–3152 (1993). [CrossRef]
  18. R. S. Quimby and B. Zheng, “Excited-state absorption measurement technique and application Pr3+-doped fluorozirconate glass,” Appl. Phys. Lett. 60(9), 1055–1057 (1992). [CrossRef]
  19. T. Schweizer, B. N. Samson, J. R. Hector, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40(4), 329–335 (1999). [CrossRef]
  20. D. E. McCumber, “Einstein relations concerning broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964). [CrossRef]
  21. J. Ganem, J. Crawford, P. Schmidt, N. W. Jenkins, and S. R. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002). [CrossRef]
  22. T. H. Lee and J. Heo, “1.6 µm emission and gain properties of Ho3+ in selenide and chalcohalide glasses,” J. Appl. Phys. 98(11), 113510 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited