OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 19129–19140

Ultra-low power modulators using MOS depletion in a high-Q SiO2-clad silicon 2-D photonic crystal resonator

Sean P. Anderson and Philippe M. Fauchet  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 19129-19140 (2010)
http://dx.doi.org/10.1364/OE.18.019129


View Full Text Article

Enhanced HTML    Acrobat PDF (1227 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In modulators that rely on changing refractive index, switching energy is primarily dependent upon the volume of the active optical mode. Photonic crystal microcavities can exhibit extremely small mode volumes on the order of a single cubic wavelength with Q values above 106. In order to be useful for integration, however, they must be embedded in oxide, which in practice reduces Q well below 103, significantly increasing switching energy. In this work we show that it is possible to create a fully oxide-clad microcavity with theoretical Q on the order of 105. We further show that by using MOS charge depletion this microcavity can be the basis for a modulator with a switching energy as low as 1 fJ/bit.

© 2010 OSA

OCIS Codes
(230.5298) Optical devices : Photonic crystals
(130.4110) Integrated optics : Modulators

ToC Category:
Photonic Crystals

History
Original Manuscript: May 28, 2010
Revised Manuscript: August 8, 2010
Manuscript Accepted: August 18, 2010
Published: August 25, 2010

Citation
Sean P. Anderson and Philippe M. Fauchet, "Ultra-low power modulators using MOS depletion in a high-Q SiO2-clad silicon 2-D photonic crystal resonator," Opt. Express 18, 19129-19140 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-19129


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Gupta, Copper Interconnect Technology (Springer, New York, 2009).
  2. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009). [CrossRef]
  3. R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE 96(2), 230–247 (2008). [CrossRef]
  4. J. W. Goodman, F. J. Leonberger, K. Sun-Yuan, and R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72(7), 850–866 (1984). [CrossRef]
  5. D. A. B. Miller, “Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters,” Opt. Lett. 14(2), 146–148 (1989). [CrossRef] [PubMed]
  6. M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006). [CrossRef]
  7. G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, “Predictions of CMOS compatible on-chip optical interconnect,” Integr. VLSI J. 40(4), 434–446 (2007). [CrossRef]
  8. M. R. Watts, D. C. Trotter, R. W. Young, A. L. Lentine, and W. A. Zortman, “Limits to silicon modulator bandwidth and power consumption,” Proc. SPIE 7221, 72210M (2009). [CrossRef]
  9. K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express 17(7), 5118–5124 (2009). [CrossRef] [PubMed]
  10. L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express 17(17), 15248–15256 (2009). [CrossRef] [PubMed]
  11. X. Zheng, J. Lexau, Y. Luo, H. Thacker, T. Pinguet, A. Mekis, G. Li, J. Shi, P. Amberg, N. Pinckney, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-low-energy all-CMOS modulator integrated with driver,” Opt. Express 18(3), 3059–3070 (2010). [CrossRef] [PubMed]
  12. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005). [CrossRef]
  13. S. Tomljenovic-Hanic, C. M. de Sterke, and M. J. Steel, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express 14(25), 12451–12456 (2006). [CrossRef] [PubMed]
  14. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010). [CrossRef]
  15. I. Märki, M. Salt, H. P. Herzig, R. Stanley, L. El Melhaoui, P. Lyan, and J. M. Fedeli, “Optically tunable microcavity in a planar photonic crystal silicon waveguide buried in oxide,” Opt. Lett. 31(4), 513–515 (2006). [CrossRef] [PubMed]
  16. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007). [CrossRef] [PubMed]
  17. W. M. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007). [CrossRef] [PubMed]
  18. Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009). [CrossRef] [PubMed]
  19. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006). [CrossRef]
  20. T. Yamamoto, M. Notomi, H. Taniyama, E. Kuramochi, Y. Yoshikawa, Y. Torii, and T. Kuga, “Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab,” Opt. Express 16(18), 13809–13817 (2008). [CrossRef] [PubMed]
  21. O. Painter, K. Srinivasan, J. D. O'Brien, A. Scherer, and P. D. Dapkus, “Tailoring of the resonant mode properties of optical nanocavities in two-dimensional photonic crystal slab waveguides,” J. Opt. A, Pure Appl. Opt. 3(6), 161–170 (2001). [CrossRef]
  22. K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10(15), 670–684 (2002). [PubMed]
  23. K. Srinivasan and O. Painter, “Fourier space design of high-Q cavities in standard and compressed hexagonal lattice photonic crystals,” Opt. Express 11(6), 579–593 (2003). [CrossRef] [PubMed]
  24. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Optimization of the Q factor in photonic crystal microcavities,” IEEE J. Quantum Electron. 38(7), 850–856 (2002). [CrossRef]
  25. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003). [CrossRef] [PubMed]
  26. S. P. Anderson and P. M. Fauchet, “Ultra-low energy switches based on silicon photonic crystals for on-chip optical interconnects,” Proc. SPIE 7606, 76060R (2010). [CrossRef]
  27. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31(20), 2972–2974 (2006). [CrossRef] [PubMed]
  28. Meep, http://ab-initio.mit.edu/meep
  29. V. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys. 107(17), 6756–6769 (1997). [CrossRef]
  30. Harminv, http://ab-initio.mit.edu/harminv
  31. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]
  32. J. P. Lorenzo and R. A. Soref, “1.3 µm electro-optic silicon switch,” Appl. Phys. Lett. 51(1), 6–8 (1987). [CrossRef]
  33. C. A. Barrios, V. Rosa de Almeida, and M. Lipson, “Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator,” J. Lightwave Technol. 21(4), 1089–1098 (2003). [CrossRef]
  34. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  35. Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005). [CrossRef]
  36. S. M. Sze, Semiconductor Devices: Physics and Technology (Wiley, New York, 1985).
  37. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004). [CrossRef] [PubMed]
  38. S. R. Giguere, L. Friedman, R. A. Soref, and J. P. Lorenzo, “Simulation studies of silicon electro-optic waveguide devices,” J. Appl. Phys. 68(10), 4964–4970 (1990). [CrossRef]
  39. C. A. Barrios and M. Lipson, “Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration,” J. Appl. Phys. 96(11), 6008–6015 (2004). [CrossRef]
  40. D. Englund and J. Vucković, “A direct analysis of photonic nanostructures,” Opt. Express 14(8), 3472–3483 (2006). [CrossRef] [PubMed]
  41. J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16(21), 16659–16669 (2008). [CrossRef] [PubMed]
  42. S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1(5), 293–296 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited