OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 19273–19285

Simulations and experiments of aperiodic and multiplexed gratings in volume holographic imaging systems

Yuan Luo, Jose Castro, Jennifer K. Barton, Raymond K. Kostuk, and George Barbastathis  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 19273-19285 (2010)
http://dx.doi.org/10.1364/OE.18.019273


View Full Text Article

Enhanced HTML    Acrobat PDF (20496 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new methodology describing the effects of aperiodic and multiplexed gratings in volume holographic imaging systems (VHIS) is presented. The aperiodic gratings are treated as an ensemble of localized planar gratings using coupled wave methods in conjunction with sequential and non-sequential ray-tracing techniques to accurately predict volumetric diffraction effects in VHIS. Our approach can be applied to aperiodic, multiplexed gratings and used to theoretically predict the performance of multiplexed volume holographic gratings within a volume hologram for VHIS. We present simulation and experimental results for the aperiodic and multiplexed imaging gratings formed in PQ-PMMA at 488nm and probed with a spherical wave at 633nm. Simulation results based on our approach that can be easily implemented in ray-tracing packages such as Zemax® are confirmed with experiments and show proof of consistency and usefulness of the proposed models.

© 2010 OSA

OCIS Codes
(090.2890) Holography : Holographic optical elements
(090.4220) Holography : Multiplex holography
(090.7330) Holography : Volume gratings
(110.0110) Imaging systems : Imaging systems

ToC Category:
Holography

History
Original Manuscript: June 14, 2010
Revised Manuscript: July 18, 2010
Manuscript Accepted: July 19, 2010
Published: August 26, 2010

Citation
Yuan Luo, Jose Castro, Jennifer K. Barton, Raymond K. Kostuk, and George Barbastathis, "Simulations and experiments of aperiodic and multiplexed gratings in volume holographic imaging systems," Opt. Express 18, 19273-19285 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-19273


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Liu, D. Psaltis, and G. Barbastathis, “Real-time spectral imaging in three spatial dimensions,” Opt. Lett. 27(10), 854–856 (2002). [CrossRef]
  2. P. J. Gelsinger-Austin, Y. Luo, J. M. Watson, R. K. Kostuk, G. Barbastathis, J. K. Barton, and J. M. Castro, “Optical design for a spatial-spectral volume holographic imaging system,” Opt. Eng. 49(4), 043001–043005 (2010). [CrossRef]
  3. Y. Luo, S. B. Oh, and G. Barbastathis, “Wavelength-coded multifocal microscopy,” Opt. Lett. 35(5), 781–783 (2010). [PubMed]
  4. Z. Li, D. Psaltis, W. Liu, W. R. Johson, and G. Bearman, “Volume holographic spectral imaging,” Proc. SPIE 5694, 33–40 (2005). [CrossRef]
  5. A. V. Veniaminov, V. G. Goncharov, and A. P. Popov, “Hologram amplification by diffusion destruction of out-of phase periodic structures,” Opt. Spectrosc. 70(4), 505–508 (1991).
  6. Y. Luo, P. J. Gelsinger-Austin, J. M. Watson, G. Barbastathis, J. K. Barton, and R. K. Kostuk, “Laser-induced fluorescence imaging of subsurface tissue structures with a volume holographic spatial-spectral imaging system,” Opt. Lett. 33(18), 2098–2100 (2008). [CrossRef] [PubMed]
  7. A. Sinha and G. Barbastathis, “Volume holographic imaging for surface metrology at long working distances,” Opt. Express 11(24), 3202–3209 (2003). [CrossRef] [PubMed]
  8. H. Kogelnik, “Coupled wave theory for thick hologram grating,” Bell Syst. Tech. J. 48, 2909–2946 (1969).
  9. G. Moharam and T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73(9), 1105–1112 (1983). [CrossRef]
  10. P. Wissmann, S. B. Oh, and G. Barbastathis, “Simulation and optimization of volume holographic imaging systems in Zemax,” Opt. Express 16(10), 7516–7524 (2008). [CrossRef] [PubMed]
  11. R. R. A. Syms and L. Solymar, “Localized one-dimensional theory for volume holograms,” Opt. Quantum Electron. 13(5), 415–419 (1981). [CrossRef]
  12. R. R. A. Syms and L. Solymar, “Analysis of volume holographic cylindrical lenses,” J. Opt. Soc. Am. 72(2), 179–186 (1982). [CrossRef]
  13. A. Sinha and G. Barbastathis, “Broadband volume holographic imaging,” Appl. Opt. 43(27), 5214–5221 (2004). [CrossRef] [PubMed]
  14. A. Sinha, W. Sun, T. Shih, and G. Barbastathis, “Volume holographic imaging in transmission geometry,” Appl. Opt. 43(7), 1533–1551 (2004). [CrossRef] [PubMed]
  15. G. Barbastathis, and D. Psaltis, “Volume holographic multiplexing methods,” in Holographic Data Storage (Springer, 2000).
  16. Y. Luo, P. J. Gelsinger, J. K. Barton, G. Barbastathis, and R. K. Kostuk, “Optimization of multiplexed holographic gratings in PQ-PMMA for spectral-spatial imaging filters,” Opt. Lett. 33(6), 566–568 (2008). [CrossRef] [PubMed]
  17. R. K. Kostuk, Multiple grating reflection volume holograms with application to optical interconnects, Ph. D. Thesis at Stanford University, 1986.
  18. Y. Luo, J. M. Russo, R. K. Kostuk, and G. Barbastathis, “Silicon oxide nanoparticles doped PQ-PMMA for volume holographic imaging filters,” Opt. Lett. 35(8), 1269–1271 (2010). [CrossRef] [PubMed]
  19. G. Barbastathis and D. Psaltis, “Shift-multiplexed holographic memory using the two-lambda method,” Opt. Lett. 21(6), 432–434 (1996). [CrossRef] [PubMed]
  20. W. K. Maeda, “Edge-illumination gratings in PQ-doped PMMA for OCDMA applications,” The University of Arizona, ECE Department, Thesis, 2005.
  21. J. M. Russo, “Temperature dependence of holographic filers in phenanthrenquinone-doped poly(methyl methacrylate),” The University of Arizona, ECE Department, Thesis, 2007.
  22. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited