OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 19286–19291

Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography

Ting Han, Steve Madden, Douglas Bulla, and Barry Luther-Davies  »View Author Affiliations

Optics Express, Vol. 18, Issue 18, pp. 19286-19291 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2410 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the fabrication of low loss rib waveguides from chalcogenide glass films by thermal nano-imprint using a soft stamp. Waveguides 2 – 4 µm wide and 1 µm high were fabricated with extremely smooth sidewalls and optical losses limited by Rayleigh scattering to values of 0.26 dB/cm for the TM and 0.27 dB/cm for TE polarizations at 1550nm.

© 2010 OSA

OCIS Codes
(130.4310) Integrated optics : Nonlinear
(190.4360) Nonlinear optics : Nonlinear optics, devices
(130.2755) Integrated optics : Glass waveguides

ToC Category:
Integrated Optics

Original Manuscript: June 18, 2010
Revised Manuscript: July 18, 2010
Manuscript Accepted: July 20, 2010
Published: August 26, 2010

Ting Han, Steve Madden, Douglas Bulla, and Barry Luther-Davies, "Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography," Opt. Express 18, 19286-19291 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Quémard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62(8), 1435–1440 (2001). [CrossRef]
  2. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett. 27(2), 119–121 (2002). [CrossRef]
  3. A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008). [CrossRef] [PubMed]
  4. M. D. Pelusi, V. G. Ta’eed, E. Libin Fu, M. R. E. Magi, S. Lamont, Madden, D. A. P. Duk-Yong Choi, B. Bulla, Luther-Davies, and B. J. Eggleton, “Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing,” IEEE J. Sel. Top. Quantum Electron. 14(3), 529–539 (2008). [CrossRef]
  5. M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009). [CrossRef] [PubMed]
  6. V. G. Ta’eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides,” Opt. Express 14(23), 11242–11247 (2006). [CrossRef] [PubMed]
  7. S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta’eed, M. D. Pelusi, and B. J. Eggleton, “Long, low loss etched As(2)S(3) chalcogenide waveguides for all-optical signal regeneration,” Opt. Express 15(22), 14414–14421 (2007). [CrossRef] [PubMed]
  8. D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-Thick Low-Loss As2S3 Planar Waveguides for Nonlinear Optical Devices,” IEEE Photon. Technol. Lett. 22(7), 495–497 (2010). [CrossRef]
  9. D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance,” J. Appl. Phys. 107(5), 053106 (2010). [CrossRef]
  10. D. Y. Choi, S. Madden, A. Rode, R. P. Wang, A. Ankiewicz, and B. Luther-Davies, “Surface roughness in plasma-etched As2S3 films: Its origin and improvement,” IEEE Trans. NanoTechnol. 7(3), 285–290 (2008). [CrossRef]
  11. H. Schift, “Nanoimprint lithography: An old story in modern times? A review,” J. Vac. Sci. Technol. B 26(2), 458–480 (2008). [CrossRef]
  12. X. H. Zhang, Y. Guimond, and Y. Bellec, “Production of complex chalcogenide glass optics by molding for thermal imaging,” J. Non-Cryst. Solids 326-327, 519–523 (2003). [CrossRef]
  13. W. J. Pan, H. Rowe, D. Zhang, Y. Zhang, A. Loni, D. Furniss, P. Sewell, T. M. Benson, and A. B. Seddon, “One-step hot embossing of optical rib waveguides in chalcogenide glasses,” Microw. Opt. Technol. Lett. 50(7), 1961–1963 (2008). [CrossRef]
  14. M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26(2), 606–610 (2008). [CrossRef]
  15. Z. G. Lian, W. Pan, D. Furniss, T. M. Benson, A. B. Seddon, T. Kohoutek, J. Orava, and T. Wagner, “Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films,” Opt. Lett. 34(8), 1234–1236 (2009). [CrossRef] [PubMed]
  16. T. Han, S. Madden, M. Zhang, R. Charters, and B. Luther-Davies, “Low loss high index contrast nanoimprinted polysiloxane waveguides,” Opt. Express 17(4), 2623–2630 (2009). [CrossRef] [PubMed]
  17. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (gamma = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express 16(19), 14938–14944 (2008). [CrossRef] [PubMed]
  18. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10(11), 2395–2413 (1971). [CrossRef] [PubMed]
  19. R. Wang, S. Madden, C. Zha, A. Rode, and B. Luther-Davies, “Annealing induced phase transformations in amorphous As2S3 films,” J. Appl. Phys. 100(6), 063524 (2006). [CrossRef]
  20. S. Madden, D. Choi, A. Rode, and B. Luther-Davies, “Low Loss Etched Ge33As12Se55 Chalcogenide Waveguides, Proc ACOFT-AOS 2006, 75-78, (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited