OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 19353–19360

Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides

Borwen You, Ja-Yu Lu, Jia-Hong Liou, Chin-Ping Yu, Hao-Zai Chen, Tze-An Liu, and Jin-Long Peng  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 19353-19360 (2010)
http://dx.doi.org/10.1364/OE.18.019353


View Full Text Article

Enhanced HTML    Acrobat PDF (1363 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A simple dielectric hollow-tube has been experimentally demonstrated at terahertz range for bio-molecular layer sensing based on the anti-resonant reflecting wave-guidance mechanism. We experimentally study the dependence of thin-film detection sensitivity on the optical geometrical parameters of tubes, different thicknesses and tube wall refractive indices, and on different resonant frequencies. A polypropylene hollow-tube with optimized sensitivity of 0.003mm/μm is used to sense a subwavelength-thick (λ/225) carboxypolymethylene molecular overlayer on the tube’s inner surface, and the minimum detectable quantity of molecules could be down to 1.22picomole/mm2. A double-layered Fabry-Pérot model is proposed for calculating the overlayer thicknesses, which agrees well with the experimental results.

© 2010 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(130.6010) Integrated optics : Sensors
(230.7370) Optical devices : Waveguides
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Sensors

History
Original Manuscript: July 14, 2010
Revised Manuscript: August 23, 2010
Manuscript Accepted: August 23, 2010
Published: August 26, 2010

Citation
Borwen You, Ja-Yu Lu, Jia-Hong Liou, Chin-Ping Yu, Hao-Zai Chen, Tze-An Liu, and Jin-Long Peng, "Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides," Opt. Express 18, 19353-19360 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-19353


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2(1), 012301 (2009). [CrossRef]
  2. F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31(8), 1118–1120 (2006). [CrossRef] [PubMed]
  3. H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87(24), 241119 (2005). [CrossRef]
  4. C. Debus and P. Haring Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007). [CrossRef]
  5. S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009). [CrossRef]
  6. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008). [CrossRef] [PubMed]
  7. B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007). [CrossRef] [PubMed]
  8. R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009). [CrossRef]
  9. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Surface-plasmon-resonance-like fiber-based sensor at terahertz frequencies,” J. Opt. Soc. Am. B 25(10), 1771–1775 (2008). [CrossRef]
  10. C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y. J. Huang, H. C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009). [CrossRef] [PubMed]
  11. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010). [CrossRef] [PubMed]
  12. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002). [CrossRef]
  13. A. M. Zheltikov, “Ray-optic analysis of the (bio)sensing ability of ring-cladding hollow waveguides,” Appl. Opt. 47(3), 474–479 (2008). [CrossRef] [PubMed]
  14. A. Hassani and M. Skorobogatiy, “Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness,” J. Opt. Soc. Am. B 26(8), 1550–1557 (2009). [CrossRef]
  15. M. Zourob, S. Elwary and A. Turner, “Fiber Optic Biosensors for Bacterial Detection,” in Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems, (Springer Science, New York, 2008).
  16. J. W. Lamb, “Miscellancous data on materials for millimetre and submillimetre optics,” Int. J. Infrared. Milli. 17, 1996–2034 (1996).
  17. J. O. Carnali and M. S. Naser, “The use of dilute solution viscometry to characterize the network properties of carbopol microgels,” Colloid Polym. Sci. 270(2), 183–193 (1992). [CrossRef]
  18. Y. Kawashima and M. Kuwano, “Carboxyvinyl polymer having Newtonian viscosity,” United States patent 5458873 (1992).
  19. G. Klatt, R. Gebs, C. Janke, T. Dekorsy, and A. Bartels, “Rapid-scanning terahertz precision spectrometer with more than 6 THz spectral coverage,” Opt. Express 17(25), 22847–22854 (2009). [CrossRef]
  20. N. Kinrot, “Analysis of Bulk Material Sensing Using a Periodically Segmented Waveguide Mach–Zehnder Interferometer for Biosensing,” J. Lightwave Technol. 22(10), 2296–2301 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited