OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 18 — Aug. 30, 2010
  • pp: 19438–19443

Broadly tunable high-power InAs/GaAs quantum-dot external cavity diode lasers

Ksenia A. Fedorova, Maria Ana Cataluna, Igor Krestnikov, Daniil Livshits, and Edik U. Rafailov  »View Author Affiliations


Optics Express, Vol. 18, Issue 18, pp. 19438-19443 (2010)
http://dx.doi.org/10.1364/OE.18.019438


View Full Text Article

Enhanced HTML    Acrobat PDF (1326 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A record broadly tunable high-power external cavity InAs/GaAs quantum-dot diode laser with a tuning range of 202 nm (1122 nm-1324 nm) is demonstrated. A maximum output power of 480 mW and a side-mode suppression ratio greater than 45 dB are achieved in the central part of the tuning range. We exploit a number of strategies for enhancing the tuning range of external cavity quantum-dot lasers. Different waveguide designs, laser configurations and operation conditions (pump current and temperature) are investigated for optimization of output power and tunability.

© 2010 OSA

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.3600) Lasers and laser optics : Lasers, tunable
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 22, 2010
Revised Manuscript: August 19, 2010
Manuscript Accepted: August 23, 2010
Published: August 27, 2010

Citation
Ksenia A. Fedorova, Maria Ana Cataluna, Igor Krestnikov, Daniil Livshits, and Edik U. Rafailov, "Broadly tunable high-power InAs/GaAs quantum-dot external cavity diode lasers," Opt. Express 18, 19438-19443 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-18-19438


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. C. Woodworth, D. T. Cassidy, and M. J. Hamp, “Sensitive absorption spectroscopy by use of an asymmetric multiple-quantum-well diode laser in an external cavity,” Appl. Opt. 40(36), 6719–6724 (2001). [CrossRef]
  2. N. Kuramoto and K. Fujii, “Volume determination of a silicon sphere using an improved interferometer with optical frequency tuning,” IEEE Trans. Instrum. Meas. 54(2), 868–871 (2005). [CrossRef]
  3. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996). [CrossRef]
  4. B. J. Stevens, D. T. D. Childs, K. M. Groom, M. Hopkinson, and R. A. Hogg, “All semiconductor swept laser source utilizing quantum dots,” Appl. Phys. Lett. 91(12), 121119 (2007). [CrossRef]
  5. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003). [CrossRef] [PubMed]
  6. M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: High-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1185–1192 (1999). [CrossRef]
  7. K. A. Fedorova, M. A. Cataluna, A. Abdolvand, P. Battle, I. Krestnikov, D. A. Livshits, M. Khomylev, and E. U. Rafailov, “Generation of orange light from a PPKTP waveguide end-pumped by a quantum-dot tuneable laser,” in The European Conference on Lasers and Electro-Optics 2009, paper CD.P. 26 (2009). http://www.opticsinfobase.org/abstract.cfm?URI=CLEO_E-2009-CD_P26
  8. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007). [CrossRef]
  9. A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, and A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett. 32(7), 793–795 (2007). [CrossRef] [PubMed]
  10. H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000). [CrossRef]
  11. P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000). [CrossRef]
  12. A. Yu. Nevsky, U. Bressel, I. Ernsting, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral range,” Appl. Phys. B 92(4), 501–507 (2008). [CrossRef]
  13. X. Q. Lv, P. Jin, W. Y. Wang, and Z. G. Wang, “Broadband external cavity tunable quantum dot lasers with low injection current density,” Opt. Express 18(9), 8916–8922 (2010). [CrossRef] [PubMed]
  14. M. Rossetti, L. Lianhe, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and Modeling of Broad Spectrum InAs-GaAs Quantum-Dot Superluminescent Diodes Emitting at 1.2-1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007). [CrossRef]
  15. P. G. Eliseev, H. Li, T. Liu, T. C. Newell, L. F. Lester, and K. J. Malloy, “Ground-state emission and gain in ultralow-threshold InAs-InGaAs quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 135–142 (2001). [CrossRef]
  16. H. Huang and D. G. Deppe, “Rate equation model for nonequilibrium operating conditions in a self-organized quantum-dot laser,” IEEE J. Quantum Electron. 37(5), 691–698 (2001). [CrossRef]
  17. H. Tabuchi and H. Ishikawa, “External grating tunable MQW laser with wide tuning range of 240 nm,” Electron. Lett. 26(11), 742–743 (1990). [CrossRef]
  18. L. Ching-Fuh and J. Chaur-Shiuann, “Superluminescent diodes with bent waveguide,” IEEE Photon. Technol. Lett. 8(2), 206–208 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited