OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 19732–19742

All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization

Steffen Wilbrandt, Olaf Stenzel, and Norbert Kaiser  »View Author Affiliations


Optics Express, Vol. 18, Issue 19, pp. 19732-19742 (2010)
http://dx.doi.org/10.1364/OE.18.019732


View Full Text Article

Enhanced HTML    Acrobat PDF (978 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new all-oxide design for broadband antireflection coatings with significantly reduced impact of deposition errors to the final reflectance is presented. Computational manufacturing including re-optimization during deposition has been used in the design work to account for maximum insensibility of the design with respect to deposition errors typical for plasma ion assisted deposition PIAD. Repeated deposition runs with the deducted monitoring and re-optimization strategy verify the validity of the simulations and the stability of the derived design solution.

© 2010 OSA

OCIS Codes
(310.1210) Thin films : Antireflection coatings
(310.1620) Thin films : Interference coatings
(310.1860) Thin films : Deposition and fabrication
(310.4165) Thin films : Multilayer design
(310.5696) Thin films : Refinement and synthesis methods

ToC Category:
Thin Films

History
Original Manuscript: June 25, 2010
Revised Manuscript: August 19, 2010
Manuscript Accepted: August 19, 2010
Published: September 1, 2010

Citation
Steffen Wilbrandt, Olaf Stenzel, and Norbert Kaiser, "All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization," Opt. Express 18, 19732-19742 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-19732


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Market and Research Report Optical Coatings: Technologies and Global Markets, October 2009, SMC030D, BCC Research, Wellesley, MA USA Web: www.bccresearch.com
  2. A. V. Tikhonravov, “Some theoretical aspects of thin-film optics and their applications,” Appl. Opt. 32(28), 5417–5426 (1993). [CrossRef] [PubMed]
  3. J. A. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and P. G. Verly, “Optimal single-band normal incidence antireflection coatings,” Appl. Opt. 35(4), 644–658 (1996). [CrossRef] [PubMed]
  4. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, and J. A. Dobrowolski, “Estimation of the average residual reflectance of broadband antireflection coatings,” Appl. Opt. 47(13), C124–C130 (2008). [CrossRef] [PubMed]
  5. A. V. Tikhonravov and M. K. Trubetskov, “Computational manufacturing as a bridge between design and production,” Appl. Opt. 44(32), 6877–6884 (2005). [CrossRef] [PubMed]
  6. S. Wilbrandt, O. Stenzel, N. Kaiser, M. K. Trubetskov, and A. V. Tikhonravov, “In situ optical characterization and reengineering of interference coatings,” Appl. Opt. 47(13), C49–C54 (2008). [CrossRef] [PubMed]
  7. S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008). [CrossRef]
  8. K. Friedrich, S. Wilbrandt, O. Stenzel, N. Kaiser, and K. H. Hoffmann, “Computational manufacturing of optical interference coatings: method, simulation results, and comparison with experiment,” Appl. Opt. 49(16), 3150–3162 (2010). [CrossRef] [PubMed]
  9. J. A. Dobrowolski, “Modern computational methods for optical thin film systems,” Thin Solid Films 34(2), 313–321 (1976). [CrossRef]
  10. C. Holm, “Optical thin film production with continuous reoptimization of layer thicknesses,” Appl. Opt. 18(12), 1978–1982 (1979). [CrossRef] [PubMed]
  11. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Does Broadband Optical Monitoring Provide an Error Self Compensation Mechanism?”, in Optical Interference Coatings Topical Meeting, 2010 OSA Technical Digest Series (Optical Society of America, 2010), Poster TuC3.
  12. B. T. Sullivan and J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. I. Theoretical description,” Appl. Opt. 31(19), 3821–3835 (1992). [CrossRef] [PubMed]
  13. http://www.optilayer.com
  14. A. V. Tikhonravov, M. K. Trubetskov, M. A. Kokarev, T. V. Amotchkina, A. Duparré, E. Quesnel, D. Ristau, and S. Günster, “Effect of systematic errors in spectral photometric data on the accuracy of determination of optical parameters of dielectric thin films,” Appl. Opt. 41(13), 2555–2560 (2002). [CrossRef] [PubMed]
  15. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Investigation of the effect of accumulation of thickness errors in optical coating production by broadband optical monitoring,” Appl. Opt. 45(27), 7026–7034 (2006). [CrossRef] [PubMed]
  16. B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “Interest of broadband optical monitoring for thin-film filter manufacturing,” Appl. Opt. 46(20), 4294–4303 (2007). [CrossRef] [PubMed]
  17. B. T. Sullivan, G. A. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, and K. Kikuchi, “High-rate automated deposition system for the manufacture of complex multilayer coatings,” Appl. Opt. 39(1), 157–167 (2000). [CrossRef]
  18. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “On the Reliability of Computational Estimations Used for Choosing the Most Manufacturable Design”, in Optical Interference Coatings Topical Meeting, 2010 OSA Technical Digest Series (Optical Society of America, 2010), Poster TuA3.
  19. O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vakuum in Forschung und Praxis 21(5), 15–23 (2009). [CrossRef]
  20. A. Duparré and D. Ristau, “Optical interference coatings 2007 measurement problem,” Appl. Opt. 47(13), C179–C184 (2008). [CrossRef] [PubMed]
  21. A. Herpin, “Calcul du pouvoir réflecteur d’un système stratifiè quelconque,” C. R. Acad. Sci. 225, 182–183 (1947).
  22. S. Wilbrandt, Dissertation “Online-Monitoring inhomogener optischer Schichtsysteme im visuellen Spektralbereich”, (2006)
  23. V. Janicki, S. Wilbrandt, O. Stenzel, D. Gäbler, N. Kaiser, A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Hybrid optical coating design for omnidirectional antireflection purposes,” J. Opt. A, Pure Appl. Opt. 7(8), L9–L12 (2005). [CrossRef]
  24. A. Shuttleworth, P. Girow, S. McCabe, and J. Bennett, “Real time re-optimisation of optical thin film coating designs during manufacture,” IEE Conf. Publ. 435, 197–201 (1997).
  25. A. V. Tikhonravov and M. K. Trubetskov, “On-line characterization and reoptimization of optical coatings,” Proc. SPIE 5250, 406 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited