OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 19770–19791

Poynting–Stokes tensor and radiative transfer in discrete random media: The microphysical paradigm

Michael I. Mishchenko  »View Author Affiliations


Optics Express, Vol. 18, Issue 19, pp. 19770-19791 (2010)
http://dx.doi.org/10.1364/OE.18.019770


View Full Text Article

Enhanced HTML    Acrobat PDF (1271 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper solves the long-standing problem of establishing the fundamental physical link between the radiative transfer theory and macroscopic electromagnetics in the case of elastic scattering by a sparse discrete random medium. The radiative transfer equation (RTE) is derived directly from the macroscopic Maxwell equations by computing theoretically the appropriately defined so-called Poynting–Stokes tensor carrying information on both the direction, magnitude, and polarization characteristics of local electromagnetic energy flow. Our derivation from first principles shows that to compute the local Poynting vector averaged over a sufficiently long period of time, one can solve the RTE for the direction-dependent specific intensity column vector and then integrate the direction-weighted specific intensity over all directions. Furthermore, we demonstrate that the specific intensity (or specific intensity column vector) can be measured with a well-collimated radiometer (photopolarimeter), which provides the ultimate physical justification for the use of such instruments in radiation-budget and particle-characterization applications. However, the specific intensity cannot be interpreted in phenomenological terms as signifying the amount of electromagnetic energy transported in a given direction per unit area normal to this direction per unit time per unit solid angle. Also, in the case of a densely packed scattering medium the relation of the measurement with a well-collimated radiometer to the time-averaged local Poynting vector remains uncertain, and the theoretical modeling of this measurement is likely to require a much more complicated approach than solving an RTE.

© 2010 OSA

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(290.4210) Scattering : Multiple scattering
(290.5850) Scattering : Scattering, particles
(290.5855) Scattering : Scattering, polarization

ToC Category:
Scattering

History
Original Manuscript: August 4, 2010
Manuscript Accepted: August 25, 2010
Published: September 1, 2010

Virtual Issues
Vol. 5, Iss. 13 Virtual Journal for Biomedical Optics

Citation
Michael I. Mishchenko, "Poynting–Stokes tensor and radiative transfer in discrete random media: the microphysical paradigm," Opt. Express 18, 19770-19791 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-19770


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. I. Mishchenko, L. Liu, D. W. Mackowski, B. Cairns, and G. Videen, “Multiple scattering by random particulate media: exact 3D results,” Opt. Express 15(6), 2822–2836 (2007). [CrossRef] [PubMed]
  2. M. I. Mishchenko, J. M. Dlugach, and L. Liu, “Azimuthal asymmetry of the coherent backscattering cone: theoretical results,” Phys. Rev. A 80(5), 053824 (2009). [CrossRef]
  3. M. I. Mishchenko, J. M. Dlugach, L. Liu, V. K. Rosenbush, N. N. Kiselev, and Yu. G. Shkuratov, “Direct solutions of the Maxwell equations explain opposition phenomena observed for high-albedo solar system objects,” Astrophys. J. 705(2), L118–L122 (2009). [CrossRef]
  4. M. I. Mishchenko, V. K. Rosenbush, N. N. Kiselev, et al., Polarimetric Remote Sensing of Solar System Bodies (Akedemperoidyka, Kyiv, 2010). http://www.giss.nasa.gov/staff/mmishchenko/books.html
  5. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).
  6. J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16(4), 527–610 (1974). [CrossRef]
  7. V. V. Sobolev, Light Scattering in Planetary Atmospheres (Pergamon, Oxford, 1975).
  8. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, New York, 1978).
  9. H. C. van de Hulst, Multiple Light Scattering (Academic Press, New York, 1980).
  10. J. Lenoble, ed., Radiative Transfer in Scattering and Absorbing Atmospheres (A. Deepak, Hampton, Va., 1985).
  11. R. M. Goody, and Y. L. Yung, Atmospheric Radiation: Theoretical Basis (Oxford U. Press, Oxford, 1989).
  12. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic Press, San Diego, Ca., 1994).
  13. G. L. Stephens, Remote Sensing of the Lower Atmosphere (Oxford U. Press, New York, 1994).
  14. E. G. Yanovitskij, Light Scattering in Inhomogeneous Atmospheres (Springer, Berlin, 1997).
  15. G. E. Thomas, and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge U. Press, New York, 1999).
  16. K. N. Liou, An Introduction to Atmospheric Radiation (Academic Press, San Diego, 2002).
  17. M. Modest, Radiative Heat Transfer (Academic Press, San Diego, Ca., 2003).
  18. J. W. Hovenier, C. van der Mee, and H. Domke, Transfer of Polarized Light in Planetary Atmospheres – Basic Concepts and Practical Methods (Springer, Berlin, 2004).
  19. A. Marshak, and A. B. Davis, eds., 3D Radiative Transfer in Cloudy Atmospheres (Springer, Berlin, 2005).
  20. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering (Cambridge U. Press, Cambridge, UK, 2006).
  21. G. W. Petty, A First Course in Atmospheric Radiation (Sundog Publishing, Madison, Wi., 2006).
  22. W. Zdunkowski, T. Trautmann, and A. Bott, Radiation in the Atmosphere (Cambridge U. Press, Cambridge, UK, 2007).
  23. A. B. Davis and A. Marshak, “Solar radiation transport in the cloudy atmosphere: a 3D perspective on observations and climate impacts,” Rep. Prog. Phys. 73(2), 026801 (2010). [CrossRef]
  24. Yu. N. Barabanenkov, “Multiple scattering of waves by ensembles of particles and the theory of radiation transport,” Sov. Phys. Usp. 18(9), 673–689 (1975). [CrossRef]
  25. L. A. Apresyan, and Yu. A. Kravtsov, Radiation Transfer (Gordon and Breach, Basel, 1996).
  26. M. I. Mishchenko, “Multiple scattering, radiative transfer, and weak localization in discrete random media: the unified microphysical approach,” Rev. Geophys. 46(2), RG2003 (2008). [CrossRef]
  27. M. I. Mishchenko, “Gustav Mie and the fundamental concept of electromagnetic scattering by particles: a perspective,” J. Quant. Spectrosc. Radiat. Transf. 110(14-16), 1210–1222 (2009). [CrossRef]
  28. M. I. Mishchenko, “Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics,” Appl. Opt. 41(33), 7114–7134 (2002). [CrossRef] [PubMed]
  29. M. I. Mishchenko, “Microphysical approach to polarized radiative transfer: extension to the case of an external observation point,” Appl. Opt. 42(24), 4963–4967 (2003). [CrossRef] [PubMed]
  30. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  31. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1999).
  32. E. J. Rothwell, and M. J. Cloud, Electromagnetics (CRC Press, Boca-Raton, Fl., 2009).
  33. R. W. Preisendorfer, Radiative Transfer on Discrete Spaces (Pergamon Press, Oxford, 1965).
  34. E. A. Milne, “Thermodynamics of the stars,” Handbuch der Astrophysik 3, 65–255 (1930).
  35. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge U. Press, Cambridge, UK, 2002). http://www.giss.nasa.gov/staff/mmishchenko/books.html
  36. M. I. Mishchenko, “Multiple scattering by particles embedded in an absorbing medium. 2. Radiative transfer equation,” J. Quant. Spectrosc. Radiat. Transf. 109(14), 2386–2390 (2008). [CrossRef]
  37. S. Silver, ed., Microwave Antenna Theory and Design (McGraw-Hill, New York, 1949).
  38. C. Müller, Foundations of the Mathematical Theory of Electromagnetic Waves (Springer, Berlin, 1969).
  39. G. G. Stokes, “On the composition and resolution of streams of polarized light from different sources,” Trans. Cambridge Philos. Soc. 9, 399–416 (1852).
  40. A. G. Borovoy, ““Method of iterations in multiple scattering: the transfer equation,” Izv. Vuzov Fizika, 6, 50–54 (1966).
  41. A. G. Borovoi, “Multiple scattering of short waves by uncorrelated and correlated scatterers,” Light Scattering Rev. 1, 181–252 (2006). [CrossRef]
  42. V. Twersky, “On propagation in random media of discrete scatterers,” Proc. Symp. Appl. Math. 16, 84–116 (1964).
  43. C. V. M. van der Mee, “An eigenvalue criterion for matrices transforming Stokes parameters,” J. Math. Phys. 34(11), 5072–5088 (1993). [CrossRef]
  44. J. W. Hovenier and C. V. M. van der Mee, “Testing scattering matrices: a compendium of recipes,” J. 
Quantum. Spectrosc. Radiat. Transf. 55(5), 649–661 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited