OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 20190–20200

Silicon nanowire based radio-frequency spectrum analyzer

Bill Corcoran, Trung D. Vo, Mark D. Pelusi, Christelle Monat, Dan-Xia Xu, Adam Densmore, Rubin Ma, Siegfried Janz, David J. Moss, and Benjamin J. Eggleton  »View Author Affiliations


Optics Express, Vol. 18, Issue 19, pp. 20190-20200 (2010)
http://dx.doi.org/10.1364/OE.18.020190


View Full Text Article

Enhanced HTML    Acrobat PDF (1537 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a terahertz bandwidth silicon nanowire based radio-frequency spectrum analyzer using cross-phase modulation. We show that the device provides accurate characterization of 640Gbaud on-off-keyed data stream and demonstrate its potential for optical time-division multiplexing optimization and optical performance monitoring of ultrahigh speed signals on a silicon chip. We analyze the impact of free carrier effects on our device, and find that the efficiency of the device is not reduced by two-photon or free-carrier absorption, nor its accuracy compromised by free-carrier cross-chirp.

© 2010 OSA

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(060.4256) Fiber optics and optical communications : Networks, network optimization

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 30, 2010
Revised Manuscript: August 15, 2010
Manuscript Accepted: September 1, 2010
Published: September 7, 2010

Citation
Bill Corcoran, Trung D. Vo, Mark D. Pelusi, Christelle Monat, Dan-Xia Xu, Adam Densmore, Rubin Ma, Siegfried Janz, David J. Moss, and Benjamin J. Eggleton, "Silicon nanowire based radio-frequency spectrum analyzer," Opt. Express 18, 20190-20200 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-20190


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett. 36(24), 2027–2029 (2000). [CrossRef]
  2. H. C. Hansen Mulvad, L. K. Oxenløwe, M. Galili, A. T. Clausen, L. Grüner-Nielsen, and P. Jeppesen, “1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing,” Electron. Lett. 45(5), 280 (2009). [CrossRef]
  3. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008). [CrossRef] [PubMed]
  4. N. K. Fontaine, R. P. Scott, L. J. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010). [CrossRef]
  5. C. Dorrer and D. N. Maywar, “RF spectrum analysis of optical signals using nonlinear optics,” J. Lightwave Technol. 22(1), 266–274 (2004). [CrossRef]
  6. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D. Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009). [CrossRef]
  7. H. P. Weber, “Generation and Measurement of Ultrashort Light Pulses,” J. Appl. Phys. 39(13), 6041 (1968). [CrossRef]
  8. T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002). [CrossRef]
  9. D. J. Kane and R. Trebino, “Characterization of Arbitrary Femtosecond Pulses Using Frequency-Resolved Optical Gating,” J. Quantum Electron. 29(2), 571–579 (1993). [CrossRef]
  10. T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D. Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, “Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM signal,” Opt. Express 18(16), 17252–17261 (2010). [CrossRef] [PubMed]
  11. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express 16(2), 1300–1320 (2008). [CrossRef] [PubMed]
  12. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express 13(12), 4629–4637 (2005). [CrossRef] [PubMed]
  13. R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, and Y. A. Vlasov, “Raman amplification in ultrasmall silicon-on-insulator wire waveguides,” Opt. Express 12(16), 3713–3718 (2004). [CrossRef] [PubMed]
  14. R. Soref and J. Larenzo, “All-Silicon Active and Passive Guided-Wave Components for λ=1.3 and 1.6μm,” IEEE J. Quantum Electron. 22(6), 873–879 (1986). [CrossRef]
  15. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15(25), 16604–16644 (2007). [CrossRef] [PubMed]
  16. J. B. Driscoll, W. B. Astar, X. B. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and J. R. M. Osgood, “All-Optical Wavelength Conversion of 10 Gb/s RZ-OOK Data in a Silicon Nanowire via Cross-Phase Modulation: Experiment and Theoretical Investigation,” IEEE J. Sel. Top. Quantum Electron. (accepted).
  17. B. Corcoran, C. Monat, D. Pudo, B. J. Eggleton, T. F. Krauss, D. J. Moss, L. O’Faolain, M. Pelusi, and T. P. White, “Nonlinear loss dynamics in a silicon slow-light photonic crystal waveguide,” Opt. Lett. 35(7), 1073–1075 (2010). [CrossRef] [PubMed]
  18. M. D. Pelusi, T. D. Vo, F. Luan, S. J. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Terahertz bandwidth RF spectrum analysis of femtosecond pulses using a chalcogenide chip,” Opt. Express 17(11), 9314–9322 (2009). [CrossRef] [PubMed]
  19. M. Dinu, D. C. Kilper, and H. R. Stuart, “Optical performance monitoring using data stream intensity autocorrelation,” J. Lightwave Technol. 24(3), 1194–1202 (2006). [CrossRef]
  20. T. D. Vo, M. D. Pelusi, J. Schroder, B. Corcoran, and B. J. Eggleton, “Multi-Impairment Monitoring at 320 Gb/s Based on Cross-Phase Modulation Radio-Frequency Spectrum Analyzer,” IEEE Photon. Technol. Lett. 22(6), 428–430 (2010). [CrossRef]
  21. R. W. Boyd, Nonlinear optics, 3rd ed. (Academic Press, Amsterdam; Boston, 2008), pp. xix, 613 p.
  22. G. P. Agrawal, Nonlinear fiber optics, 3rd ed., Optics and photonics (Academic Press, San Diego, 2001), pp. xvi, 466 p.
  23. T. D. Vo, M. D. Pelusi, J. Schröder, F. Luan, S. J. Madden, D. Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Simultaneous multi-impairment monitoring of 640 Gb/s signals using photonic chip based RF spectrum analyzer,” Opt. Express 18(4), 3938–3945 (2010). [CrossRef] [PubMed]
  24. M. D. Pelusi, T. D. Vo, and B. J. Eggleton, ““Accuracy of waveform spectrum analysis for ultra-short optical pulses,” J. Lightwave Technol. (accepted).
  25. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion trimming in a reconfigurable wavelength selective switch,” J. Lightwave Technol. 26(1), 73–78 (2008). [CrossRef]
  26. P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T. H. Her, “Measurement of residual chromatic dispersion of a 40-Gb/s RZ signal via spectral broadening,” IEEE Photon. Technol. Lett. 14(3), 346–348 (2002). [CrossRef]
  27. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, and M. Lipson, “Frequency conversion over two-thirds of an octave in silicon nanowaveguides,” Opt. Express 18(3), 1904–1908 (2010). [CrossRef] [PubMed]
  28. D. Dimitropoulos, R. Jhaveri, R. Claps, J. C. S. Woo, and B. Jalali, “Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides,” Appl. Phys. Lett. 86(7), 071115 (2005). [CrossRef]
  29. L. H. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32(14), 2031–2033 (2007). [CrossRef] [PubMed]
  30. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear Silicon Photonics: Analytical Tools,” IEEE J. Sel. Top. Quantum Electron. 16(1), 200–215 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited