OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 20395–20400

In situ imaging of hole shape evolution in ultrashort pulse laser drilling

Sven Döring, Sören Richter, Stefan Nolte, and Andreas Tünnermann  »View Author Affiliations


Optics Express, Vol. 18, Issue 19, pp. 20395-20400 (2010)
http://dx.doi.org/10.1364/OE.18.020395


View Full Text Article

Enhanced HTML    Acrobat PDF (1634 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For the first time, in situ the hole shape evolution during ultrashort pulse laser drilling in semiconductor material is imaged. The trans-illumination of the sample at a wavelength of 1.06 µm is projected onto a standard CCD camera during the ablation, providing an image of the contour of the ablated structure perpendicular to the irradiation for drilling. This demonstrated technique enables a direct, high resolution investigation of the temporal evolution of the drilling process in the depth of the material without complex sample preparation or post processing.

© 2010 OSA

OCIS Codes
(320.7090) Ultrafast optics : Ultrafast lasers
(350.3850) Other areas of optics : Materials processing
(150.0155) Machine vision : Machine vision optics
(150.5495) Machine vision : Process monitoring and control

ToC Category:
Laser Microfabrication

History
Original Manuscript: April 6, 2010
Revised Manuscript: May 12, 2010
Manuscript Accepted: May 18, 2010
Published: September 9, 2010

Citation
Sven Döring, Sören Richter, Stefan Nolte, and Andreas Tünnermann, "In situ imaging of hole shape evolution in ultrashort pulse laser drilling," Opt. Express 18, 20395-20400 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-19-20395


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994). [CrossRef]
  2. S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys., A Mater. Sci. Process. 61(1), 33–37 (1995). [CrossRef]
  3. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13(2), 459–468 (1996). [CrossRef]
  4. C. Momma, B. N. Chichkov, S. Nolte, F. von Alvensleben, A. Tünnermann, H. Welling, and B. Wellegehausen, “Short-pulse laser ablation of solid targets,” Opt. Commun. 129(1-2), 134–142 (1996). [CrossRef]
  5. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling, “Ablation of metals by ultrashort laser pulses,” J. Opt. Soc. Am. B 14(10), 2716–2722 (1997). [CrossRef]
  6. B. Sallé, O. Gobert, P. Meynadier, M. Perdrix, G. Petite, and A. Semerok, “Femtosecond and picosecond lasermicroablation: ablation efficiency and laser microplasma expansion,” Appl. Phys., A Mater. Sci. Process. 69(7Suppl.), 381–383 (1999). [CrossRef]
  7. P. T. Mannion, J. Magee, E. Coyne, G. M. O’Connor, and T. J. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233(1-4), 275–287 (2004). [CrossRef]
  8. D. Breitling, A. Ruf, and F. Dausinger, “Fundamental aspects in micromachining of metals with short and ultrashort laser pulses,” Proc. SPIE 5339, 49–63 (2004). [CrossRef]
  9. M. Kraus, S. Collmer, S. Sommer, and F. Dausinger, “Microdrilling in Steel with Frequency-doubled Ultrashort Pulsed Laser Radiation,” J. Laser. Micro.Nanoengin. 3, 129–134 (2008). [CrossRef]
  10. J. König, S. Nolte, and A. Tünnermann, “Plasma evolution during metal ablation with ultrashort laser pulses,” Opt. Express 13(26), 10597–10607 (2005). [CrossRef] [PubMed]
  11. S. Amoruso, B. Toftmann, J. Schou, R. Velotta, and X. Wang, “Diagnostics of laser ablated plasma plumes,” Thin Solid Films 453–454, 562–572 (2004). [CrossRef]
  12. S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, and X. Wang, “Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum,” Phys. Rev. B 71(3), 033406 (2005). [CrossRef]
  13. S. Amoruso, R. Bruzzese, C. Pagano, and X. Wang, “Features of plasma plume evolution and material removal efficiency during femtosecond laser ablation of nickel in high vacuum,” Appl. Phys., A Mater. Sci. Process. 89(4), 1017–1024 (2007). [CrossRef]
  14. N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99(16), 167602 (2007). [CrossRef] [PubMed]
  15. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996). [CrossRef]
  16. N. N. Nedialkov, S. E. Imamova, and P. A. Atanasov, “Ablation of metals by ultrashort laser pulses,” J. Phys. D Appl. Phys. 37(4), 638–643 (2004). [CrossRef]
  17. N. N. Nedialkov and P. A. Atanasov, “Molecular dynamics simulation study of deep hole drilling in iron by ultrashort laser pulses,” Appl. Surf. Sci. 252(13), 4411–4415 (2006). [CrossRef]
  18. P. Lorazo, L. J. Lewis, and M. Meunier, “Thermodynamic pathways to melting, ablation, and solidification in absorbing solids under pulsed laser irradiation,” Phys. Rev. B 73(13), 134108 (2006). [CrossRef]
  19. N. N. Nedialkov, P. A. Atanasov, S. Amoruso, R. Bruzzese, and X. Wang, “Laser ablation of metals by femtosecond pulses: Theoretical and experimental study,” Appl. Surf. Sci. 253(19), 7761–7766 (2007). [CrossRef]
  20. M. E. Povarnitsyn, T. E. Itina, M. Sentis, K. V. Khishchenko, and P. R. Levashov, “Material decomposition mechanisms in femtosecond laser interactions with metals,” Phys. Rev. B 75(23), 235414 (2007). [CrossRef]
  21. T. V. Kononenko, S. M. Klimentov, S. V. Garnov, V. I. Konov, D. Breitling, C. Föhl, A. Ruf, J. Radtke, and F. Dausinger, “Hole formation process in laser deep drilling with short and ultrashort pulses,” Proc. SPIE 4426, 108–112 (2002). [CrossRef]
  22. A. E. Wynne and B. C. Stuart, “Rate dependence of short-pulse laser ablation of metals in air and vacuum,” Appl. Phys., A Mater. Sci. Process. 76(3), 373–378 (2003). [CrossRef]
  23. D. Bouilly, D. Perez, and L. J. Lewis, “Damage in materials following ablation by ultrashort laser pulses: A molecular-dynamics study,” Phys. Rev. B 76(18), 184119 (2007). [CrossRef]
  24. S. M. Klimentov, T. V. Kononenko, P. A. Pivovarov, S. V. Garnov, V. I. Konov, A. M. Prokhorov, D. Breitling, and F. Dausinger, “The role of plasma in ablation of materials by ultrashort laser pulses,” Quantum Electron. 31(5), 378–382 (2001). [CrossRef]
  25. T. V. Kononenko, S. M. Klimentov, V. I. Konov, P. A. Pivovarov, S. V. Garnov, F. Dausinger, and D. Breitling, “Propagation of short-pulsed laser radiation and stages of ablative deep channel formation,” Proc. SPIE 4274, 248–257 (2001). [CrossRef]
  26. S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, and H. Welling, “Polarization effects in ultrashort-pulse laser drilling,” Appl. Phys., A Mater. Sci. Process. 68(5), 563–567 (1999). [CrossRef]
  27. A. Ancona, F. Röser, K. Rademaker, J. Limpert, S. Nolte, and A. Tünnermann, “High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system,” Opt. Express 16(12), 8958–8968 (2008). [CrossRef] [PubMed]
  28. S. Bruneau, J. Hermann, G. Dumitru, M. Sentis, and E. Axente, “Ultra-fast laser ablation applied to deep-drilling of metals,” Appl. Surf. Sci. 248(1-4), 299–303 (2005). [CrossRef]
  29. A. Michalowski, D. Walter, F. Dausinger, and T. Graf, “Melt Dynamics and Hole Formation during Drilling with Ultrashort Pulses,” J. Laser. Micro.Nanoengin. 3, 211–215 (2008). [CrossRef]
  30. A. Luft, U. Franz, A. Emsermann, and J. Kaspar, “A study of thermal and mechanical effects on materials induced by pulsed laser drilling,” Appl. Phys., A Mater. Sci. Process. 63(2), 93–101 (1996). [CrossRef]
  31. J. Dietrich, M. Brajdic, K. Walther, A. Horn, I. Kelbassa, and R. Poprawe, “Investigation of increased drilling speed by online high-speed photography,” Opt. Lasers Eng. 46(10), 705–710 (2008). [CrossRef]
  32. P. J. L. Webster, M. S. Muller, and J. M. Fraser, “High speed in situ depth profiling of ultrafast micromachining,” Opt. Express 15(23), 14967–14972 (2007). [CrossRef] [PubMed]
  33. P. J. L. Webster, J. X. Z. Yu, B. Y. C. Leung, M. D. Anderson, V. X. D. Yang, and J. M. Fraser, “In situ 24 kHz coherent imaging of morphology change in laser percussion drilling,” Opt. Lett. 35(5), 646–648 (2010). [CrossRef] [PubMed]
  34. M. Brajdic, M. Hermans, A. Horn, and I. Kelbassa, “In situ measurement of plasma and shock wave properties inside laser-drilled metal holes,” Meas. Sci. Technol. 19(10), 105703 (2008). [CrossRef]
  35. E. Coyne, J. Magee, P. Mannion, and G. O’Connor, “A study of Femtosecond Laser interaction with Wafer Grade Silicon,” Proc. SPIE 4876, 487–499 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

Supplementary Material


» Media 1: MOV (3220 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited