OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 19 — Sep. 13, 2010
  • pp: 20445–20454

Average capacity of FSO links with transmit laser selection using non-uniform OOK signaling over exponential atmospheric turbulence channels

Antonio García-Zambrana, Beatriz Castillo-Vázquez, and Carmen Castillo-Vázquez  »View Author Affiliations

Optics Express, Vol. 18, Issue 19, pp. 20445-20454 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (996 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new upper bound on the capacity of power- and bandwidth-constrained optical wireless links using selection transmit diversity over exponential atmospheric turbulence channels with intensity modulation and direct detection is derived when non-uniform on-off keying (OOK) formats are used. In this strong turbulence free-space optical (FSO) scenario, average capacity is investigated subject to an average optical power constraint and not only to an average electrical power constraint when the transmit diversity technique assumed is based on the selection of the optical path with a greater value of irradiance. Simulation results for the mutual information are further demonstrated to confirm the analytical results for different diversity orders.

© 2010 Optical Society of America

OCIS Codes
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(060.4510) Fiber optics and optical communications : Optical communications
(060.2605) Fiber optics and optical communications : Free-space optical communication

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 6, 2010
Revised Manuscript: August 26, 2010
Manuscript Accepted: September 3, 2010
Published: September 10, 2010

Antonio García-Zambrana, Beatriz Castillo-Vázquez, and Carmen Castillo-Vázquez, "Average capacity of FSO links with transmit laser selection using non-uniform OOK signaling over exponential atmospheric turbulence channels," Opt. Express 18, 20445-20454 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Andrews, R. Phillips, and C. Hopen, Laser Beam Scintillation with Applications (SPIE Press, 2001). [CrossRef]
  2. T. A. Tsiftsis, H. G. Sandalidis, G. K. Karagiannidis, and M. Uysal, “Optical wireless links with spatial diversity over strong atmospheric turbulence channels,” IEEE Trans. Wirel. Comm. 8(2), 951–957 (2009). [CrossRef]
  3. A. Garcia-Zambrana, C. Castillo-Vazquez, B. Castillo-Vazquez, and A. Hiniesta-Gomez, “Selection transmit diversity for FSO links over strong atmospheric turbulence channels,” IEEE Photon. Technol. Lett. 21(14), 1017–1019 (2009). [CrossRef]
  4. B. Castillo-Vazquez, A. Garcia-Zambrana, and C. Castillo-Vazquez, “Closed-form BER expression for FSO links with transmit laser selection over exponential atmospheric turbulence channels,” Electron. Lett. 45(23), 1185–1187 (2009). [CrossRef]
  5. A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, “Space-time trellis coding with transmit laser selection for FSO links over strong atmospheric turbulence channels,” Opt. Express 18(6), 5356–5366 (2010). [CrossRef] [PubMed]
  6. H. G. Sandalidis, and T. A. Tsiftsis, “Outage probability and ergodic capacity of free-space optical links over strong turbulence,” Electron. Lett. 44(1), 46–47 (2008). [CrossRef]
  7. H. E. Nistazakis, E. A. Karagianni, A. D. Tsigopoulos, M. E. Fafalios, and G. S. Tombras, “Average capacity of optical wireless communication systems over atmospheric turbulence channels,” J. Lightwave Technol. 27(8), 974–979 (2009). [CrossRef]
  8. A. García-Zambrana, C. Castillo-Vázquez, and B. Castillo-Vázquez, “On the capacity of FSO links over gamma-gamma atmospheric turbulence channels using OOK signaling,” EURASIP J. Wireless Commun. Networking 2010), Article ID 127657, 9 pages doi:10.1155/2010/127657.
  9. M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media,” Opt. Eng. 40, 8 (2001). [CrossRef]
  10. M. Simon, and V. Vilnrotter, “Alamouti-type space-time coding for free-space optical communication with direct detection,” IEEE Trans. Wirel. Comm. 4(1), 35–39 (2005). [CrossRef]
  11. C. Abou-Rjeily, and W. Fawaz, “Space-time codes for MIMO ultra-wideband communications and MIMO free-space optical communications with PPM,” IEEE J. Sel. Areas Comm. 26(6), 938–947 (2008). [CrossRef]
  12. W. O. Popoola, and Z. Ghassemlooy, “BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence,” J. Lightwave Technol. 27(8), 967–973 (2009). [CrossRef]
  13. N. Letzepis, K. Nguyen, and A. Guillen i Fabregas, “andW. Cowley, “Outage analysis of the hybrid free-space optical and radio-frequency channel,” IEEE J. Sel. Areas Comm. 27(9), 1709–1719 (2009). [CrossRef]
  14. K. Davaslioglu, E. Cagiral, and M. Koca, “Free-space optical ultra-wideband communications over atmospheric turbulence channels,” Opt. Express 18(16), 618–16,627 (2010).
  15. U. Madhow, Fundamentals of Digital Communication (Cambridge Univ. Press, 2008).
  16. T. M. Cover, and J. A. Thomas, Elements of Information Theory, 2nd ed. (Wiley & Sons, 2006).
  17. A. J. Goldsmith, and P. P. Varaiya, “Capacity of fading channels with channel side information,” IEEE Trans. Inf. Theory 43(6), 1986–1992 (1997). [CrossRef]
  18. J. Li, and M. Uysal, “Optical wireless communications: system model, capacity and coding,” in Proc. VTC 2003-Fall Vehicular Technology Conference 2003 IEEE 58th, vol. 1, pp. 168–172 (2003).
  19. J. Li, and M. Uysal, “Achievable information rate for outdoor free space optical communication with intensity modulation and direct detection,” in Proc. IEEE Global Telecommunications Conference GLOBECOM ’03, vol. 5, pp. 2654–2658 (2003).
  20. H. E. Nistazakis, T. A. Tsiftsis, and G. S. Tombras, “Performance analysis of free-space optical communication systems over atmospheric turbulence channels,” IET Commun. 3(8), 1402–1409 (2009). [CrossRef]
  21. J. Anguita, I. Djordjevic, M. Neifeld, and B. Vasic, “Shannon capacities and error-correction codes for optical atmospheric turbulent channels,” J. Opt. Netw. 4(9), 586–601 (2005). [CrossRef]
  22. A. A. Farid, and S. Hranilovic, “Design of non-uniform capacity-approaching signaling for optical wireless intensity channels,” in Proc. IEEE International Symposium on Information Theory ISIT 2008, pp. 2327–2331 (2008).
  23. A. A. Farid, and S. Hranilovic, “Outage capacity with non-uniform signaling for free-space optical channels,” in Proc. 24th Biennial Symposium on Communications, pp. 204–207 (2008).
  24. A. Farid, and S. Hranilovic, “Channel capacity and non-uniform signalling for free-space optical intensity channels,” IEEE J. Sel. Areas Comm. 27(9), 1553–1563 (2009). [CrossRef]
  25. S. Hranilovic, and F. R. Kschischang, “Capacity bounds for power- and band-limited optical intensity channels corrupted by Gaussian noise,” IEEE Trans. Inf. Theory 50(5), 784–795 (2004). [CrossRef]
  26. S. Z. Denic, I. Djordjevic, J. Anguita, B. Vasic, and M. A. Neifeld, “Information theoretic limits for free-space optical channels with and without memory,” J. Lightwave Technol. 26(19), 3376–3384 (2008). [CrossRef]
  27. I. S. Gradshteyn, and I. M. Ryzhik, Table of Integrals, Series and Products, 7th ed. (Academic Press Inc., 2007).
  28. Wolfram Research, Inc., Mathematica, version 7.0 ed. (Wolfram Research, Inc., 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited