OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 1389–1397

Transformation of electromagnetically induced transparency into enhanced absorption with a standing-wave coupling field in an Rb vapor cell

In-Ho Bae, Han Seb Moon, Min-Koeung Kim, Lim Lee, and Jung Bog Kim  »View Author Affiliations

Optics Express, Vol. 18, Issue 2, pp. 1389-1397 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (339 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the transformation of electromagnetically induced transparency (EIT) into narrow enhanced absorption with an on-resonant standing-wave coupling field in the 5S1/2-5P1/2 transition of the Λ-type system of 87Rb atoms. When a coupling laser field was changed from a travelling-wave to a standing-wave that was made by adding a counter-propagating LC laser, the transmittance spectrum of the LP laser transformed the typical EIT into dramatically enhanced absorption, and a Bragg reflection signal was generated by the periodic modulation of atomic absorption. The reflected probe laser corresponding to a Bragg reflection was measured to be approximately 11.5% of the power of the incident probe laser. We analyzed the enhanced absorption signal and Bragg reflection spectrum as a function of the power and frequency detuning of the coupling laser.

© 2010 OSA

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(020.2930) Atomic and molecular physics : Hyperfine structure
(270.1670) Quantum optics : Coherent optical effects
(300.6210) Spectroscopy : Spectroscopy, atomic

ToC Category:
Atomic and Molecular Physics

Original Manuscript: October 29, 2009
Revised Manuscript: December 11, 2009
Manuscript Accepted: December 29, 2009
Published: January 12, 2010

In-Ho Bae, Han Seb Moon, Min-Koeung Kim, Lim Lee, and Jung Bog Kim, "Transformation of electromagnetically induced transparency into enhanced absorption with a standing-wave coupling field in an Rb vapor cell," Opt. Express 18, 1389-1397 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991). [CrossRef] [PubMed]
  2. S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46(1), R29–R32 (1992). [CrossRef] [PubMed]
  3. D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically induced transparency: A comparison of V, Λ, and cascade systems,” Phys. Rev. A 52(3), 2302–2311 (1995). [CrossRef] [PubMed]
  4. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995). [CrossRef] [PubMed]
  5. Y. Li, S. Jin, and M. Xiao, “Observation of an electromagnetically induced change of absorption in multilevel rubidium atoms,” Phys. Rev. A 51(3), R1754–1757 (1995). [CrossRef] [PubMed]
  6. R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: Observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74(5), 670–673 (1995). [CrossRef] [PubMed]
  7. S. A. Hopkins, E. Usadi, H. X. Chen, and A. V. Durrant, “Electromagnetically induced transparency of laser-cooled rubidium atoms in three-level Λ-type systems,” Opt. Commun. 138(1-3), 185–192 (1997). [CrossRef]
  8. H. S. Moon, S. E. Park, Y. H. Park, L. Lee, and J. B. Kim, “Passive atomic frequency standard based on coherent population trapping in 87Rb using injection-locked lasers,” J. Opt. Soc. Am. B 23(11), 2393–2397 (2006). [CrossRef]
  9. A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature 423(6941), 731–734 (2003). [CrossRef] [PubMed]
  10. D. Budker and M. V. Romalis, “Optical Magnetometry,” Nat. Phys. 3(4), 227–234 (2007). [CrossRef]
  11. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999). [CrossRef]
  12. M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001). [CrossRef] [PubMed]
  13. D. F. Phillips, A. Fleischauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light atomic vapor,” Phys. Rev. Lett. 86(5), 783–786 (2001). [CrossRef] [PubMed]
  14. A. André and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89(14), 143602 (2002). [CrossRef] [PubMed]
  15. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426(6967), 638–641 (2003). [CrossRef] [PubMed]
  16. X. M. Su and B. S. Ham, “Dynamic control of the photonic band gap using quantum coherence,” Phys. Rev. A 71(1), 013821 (2005). [CrossRef]
  17. H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57(2), 1338–1344 (1998). [CrossRef]
  18. M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59(6), 4773–4776 (1999). [CrossRef]
  19. I. H. Bae, H. S. Moon, M. K. Kim, L. Lee, and J. B. Kim, “Electromagnetically induced Bragg reflection with a stationary coupling field in a buffer rubidium vapor cell,” Appl. Opt. 47(27), 4849–4855 (2008). [CrossRef] [PubMed]
  20. S. A. Babin, D. V. Churkin, E. V. Podivilov, V. V. Potapov, and D. A. Shapiro, “Splitting of the peak of electromagnetically induced transparency by the higher-order spatial harmonics of the atomic coherence,” Phys. Rev. A 67(4), 043808 (2003). [CrossRef]
  21. A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett. 30(7), 699–701 (2005). [CrossRef] [PubMed]
  22. F. Silva, J. Mompart, V. Ahufinger, and R. Corbalan, “Electromagnetically induced transparency in Doppler-broadened three-level systems with resonant standing-wave drive,” Europhys. Lett. 51(3), 286–292 (2000). [CrossRef]
  23. F. Silva, J. Mompart, V. Ahufinger, and R. Corbalan, “Electromagnetically induced transparency with a standing-wave drive in the frequency up-conversion regime,” Phys. Rev. A 64(3), 0033802 (2001). [CrossRef]
  24. D. V. Strekalov, A. B. Matsko, and N. Yu, “Electromagnetically induced transparency with a partially standing drive field,” Phys. Rev. A 76(5), 053828 (2007). [CrossRef]
  25. B. J. Feldman and M. S. Feld, “Laser-induced line-narrowing effects in coupled Doppler-broadened transition. II. Standing-wave features,” Phys. Rev. A 5(2), 899–918 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited