OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 1521–1527

A novel method for polarization squeezing with Photonic Crystal Fibers

Josip Milanović, Mikael Lassen, Ulrik L. Andersen, and Gerd Leuchs  »View Author Affiliations

Optics Express, Vol. 18, Issue 2, pp. 1521-1527 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (320 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photonic Crystal Fibers can be tailored to increase the effective Kerr nonlinearity, while producing smaller amounts of excess noise compared to standard silicon fibers. Using these features of Photonic Crystal Fibers we create polarization squeezed states with increased purity compared to standard fiber squeezing experiments. Explicit we produce squeezed states in counter propagating pulses along the same fiber axis to achieve near identical dispersion properties. This enables the production of polarization squeezing through interference in a polarization type Sagnac interferometer. We observe Stokes parameter squeezing of -3.9 ± 0.3dB and anti-squeezing of 16.2 ± 0.3dB.

© 2010 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(270.5290) Quantum optics : Photon statistics
(270.6570) Quantum optics : Squeezed states
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Quantum Optics

Original Manuscript: April 7, 2009
Revised Manuscript: July 20, 2009
Manuscript Accepted: July 28, 2009
Published: January 12, 2010

Josip Milanovic, Mikael Lassen, Ulrik L. Andersen, and Gerd Leuchs, "A novel method for polarization squeezing with Photonic Crystal Fibers," Opt. Express 18, 1521-1527 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Dong, J. Heersink, J. F. Corney, P. D. Drummond, U. L. Andersen, and G. Leuchs, "Experimental evidence for Raman-induced limits to efficient squeezing in optical fibers," Opt. Lett. 33(2), 116-118 (2008). [CrossRef] [PubMed]
  2. J. Heersink, V. Josse, G. Leuchs, and U. L. Andersen, "Efficient polarization squeezing in optical fibers," Opt. Lett. 30(10), 1192-1194 (2005). [CrossRef] [PubMed]
  3. J. F. Corney, P. D. Drummond, J. Heersink, V. Josse, G. Leuchs, and U. L. Andersen, "Many-Body Quantum Dynamics of Polarization Squeezing in Optical Fibers," Phys. Rev. Lett. 97(2), 023606 (2006). [CrossRef] [PubMed]
  4. R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, "Broad-Band Parametric Deamplification of Quantum Noise in an Optical Fiber," Phys. Rev. Lett. 57(6), 691 (1986). [CrossRef] [PubMed]
  5. P. Russell, "Photonic Crystal Fibers," Science 299(5605), 358-362 (2003). [CrossRef] [PubMed]
  6. D. Elser, U. L. Andersen, A. Korn, O. Gl¨ockl, S. Lorenz, C. Marquardt, and G. Leuchs, "Reduction of Guided Acoustic Wave Brillouin Scattering in Photonic Crystal Fibers," Phys. Rev. Lett. 97(13), 133901 (2006). [CrossRef] [PubMed]
  7. S. L. Braunstein and A. K. Pati, Quantum Information with Continuous Variables, 1st ed. (Kluwer Academic Publ, 2003).
  8. M. Fiorentino, J. E. Sharping, P. Kumar, A. Porzio, and R. S. Windeler, "Soliton squeezing in microstructure fiber," Opt. Lett. 27(8), 649-651 (2002). [CrossRef]
  9. M. Kitagawa and Y. Yamamoto, "Number-phase minimum-uncertainty state with reduced number uncertainty in a Kerr nonlinear interferometer," Phys. Rev. A 34(5), 3974-3988 (1986). [CrossRef] [PubMed]
  10. S. Schmitt, J. Ficker, M. Wolff, F. Konig, A. Sizmann, and G. Leuchs, "Photon-Number Squeezed Solitons from an Asymmetric Fiber-Optic Sagnac Interferometer," Phys. Rev. Lett. 81(12), 2446-2449 (1998). [CrossRef]
  11. P. D. Drummond, R. M. Shelby, S. R. Friberg, and Y. Yamamoto, "Quantum solitons in optical fibres," Nature 365(6444), 307-313 (1993). [CrossRef]
  12. Q1Q2. A. Luis and L. L. Sanchez-Soto, "Quantum phase difference, phase measurements, and Stokes operators," Prog. Opt. 41, 421-481 (2000). [CrossRef]
  13. G. Stokes, On the composition and resolution of streams of polarized light from different sources (Cambridge Philosophical Society, Cambridge, 1852).
  14. J. Jauch, The theory of photons and electrons the relativistic quantum field theory of charged particles with spin one-half, (Addison-Wesley Pub. Co., Cambridge Mass., 1955).
  15. B. Robson, The theory of polarization phenomena (Clarendon Press, Oxford, 1974).
  16. A. E. Siegman, Lasers, new edition ed. (Univ Science Books, 1986).
  17. N. Korolkova and R. Loudon, "Nonseparability and squeezing of continuous polarization variables," Phys. Rev. A 71(3), 032343 (2005). [CrossRef]
  18. A. S. Chirkin, A. A. Orlov, and D. Y. Parashchuk, "Quantum theory of two-mode interactions in optically anisotropic media with cubic nonlinearities: Generation of quadrature- and polarization-squeezed light," Quantum Electron. 23(10), 870-874 (1993). [CrossRef]
  19. N. Korolkova, G. Leuchs, R. Loudon, T. C. Ralph, and C. Silberhorn, "Polarization squeezing and continuousvariable polarization entanglement," Phys. Rev. A 65(5), 052306 (2002). [CrossRef]
  20. W. P. Bowen, N. Treps, R. Schnabel, and P. K. Lam, "Experimental Demonstration of Continuous Variable Polarization Entanglement," Phys. Rev. Lett. 89(25), 253601 (2002). [CrossRef] [PubMed]
  21. J. Heersink, T. Gaber, S. Lorenz, O. Gloeckl, N. Korolkova, and G. Leuchs, "Polarization squeezing of intense pulses with a fiber-optic Sagnac interferometer," Phys. Rev. A 68(1), 013815 (2003). [CrossRef]
  22. M. Born, Principles of optics : electromagnetic theory of propagation, interference and diffraction of light, 7th ed. (Cambridge University Press, Cambridge, New York, 1999). [PubMed]
  23. V. Josse, A. Dantan, L. Vernac, A. Bramati, M. Pinard, and E. Giacobino, "Polarization Squeezing with Cold Atoms," Phys. Rev. Lett. 91(10), 103601 (2003). [CrossRef] [PubMed]
  24. J. L. Sørensen, J. Hald, and E. S. Polzik, "Quantum Noise of an Atomic Spin Polarization Measurement," Phys. Rev. Lett. 80(16), 3487-3490 (1998). [CrossRef]
  25. M. Lassen, M. Sabuncu, P. Buchhave, and U. L. Andersen, "Generation of polarization squeezing with periodically poled KTP at 1064 nm," Opt. Express 15(8), 5077-5082 (2007). [CrossRef] [PubMed]
  26. C. Silberhorn, P. K. Lam, O. Weiss, F. K¨onig, N. Korolkova, and G. Leuchs, "Generation of Continuous Variable Einstein-Podolsky-Rosen Entanglement via the Kerr Nonlinearity in an Optical Fiber," Phys. Rev. Lett. 86(19), 4267 (2001). [CrossRef] [PubMed]
  27. J. Milanovic, J. Heersink, C. Marquardt, A. Huck, U. Andersen, and G. Leuchs, "Polarization squeezing with photonic crystal fibers," Laser Phys. 17(4), 559-566 (2007). [CrossRef]
  28. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, "Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber," Phys. Rev. Lett. 90(11), 113904 (2003). [CrossRef] [PubMed]
  29. B. E. Saleh and M. C. Teich, Fundamentals of Photonics, 2.Rev. ed. ed. (Wiley & Sons, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited