OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 1613–1617

Optical sampling by laser cavity tuning

Thomas Hochrein, Rafal Wilk, Michael Mei, Ronald Holzwarth, Norman Krumbholz, and Martin Koch  »View Author Affiliations


Optics Express, Vol. 18, Issue 2, pp. 1613-1617 (2010)
http://dx.doi.org/10.1364/OE.18.001613


View Full Text Article

Enhanced HTML    Acrobat PDF (335 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Most time-resolved optical experiments rely either on external mechanical delay lines or on two synchronized femtosecond lasers to achieve a defined temporal delay between two optical pulses. Here, we present a new method which does not require any external delay lines and uses only a single femtosecond laser. It is based on the cross-correlation of an optical pulse with a subsequent pulse from the same laser. Temporal delay between these two pulses is achieved by varying the repetition rate of the laser. We validate the new scheme by a comparison with a cross-correlation measurement carried out with a conventional mechanical delay line.

© 2010 OSA

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(070.4550) Fourier optics and signal processing : Correlators
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: November 30, 2009
Revised Manuscript: January 7, 2010
Manuscript Accepted: January 7, 2010
Published: January 13, 2010

Citation
Thomas Hochrein, Rafal Wilk, Michael Mei, Ronald Holzwarth, Norman Krumbholz, and Martin Koch, "Optical sampling by laser cavity tuning," Opt. Express 18, 1613-1617 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-2-1613


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. H. Zewail, “Femtochemistry: Atomi-Scale Dynamics of the Chemical Bond,” J. Phys. Chem. A 104(24), 5660–5694 (2000). [CrossRef]
  2. V. Sundström, “Femtobiology,” Annu. Rev. Phys. Chem. 59(1), 53–77 (2008). [CrossRef]
  3. J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures, 2nd Edition (Springer, Berlin, 1999).
  4. S. T. Cundiff, “Coherent spectroscopy of semiconductors,” Opt. Express 16(7), 4639–4664 (2008). [CrossRef] [PubMed]
  5. M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, and E. A. Swanson, “Femtosecond transillumination optical coherence tomography,” Opt. Express 18, 950–952 (1993).
  6. M. J. Stevens, A. L. Smirl, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel, “Coherent control of an optically injected ballistic spin-polarized current in bulk GaAs,” J. Appl. Phys. 91(7), 4382–4386 (2002). [CrossRef]
  7. S. Hunsche, D. M. Mittleman, M. Koch, and M. C. Nuss, ““New Dimensions in T-Ray Imaging,” IEICE Trans. Electron,” E 81-C, 269–276 (1998).
  8. N. C. J. van der Valk, W. A. M. van der Marel, and P. C. M. Planken, “Terahertz polarization imaging,” Opt. Lett. 30(20), 2802–2804 (2005). [CrossRef] [PubMed]
  9. R. L. Fork and F. A. Beisser, “Real-time intensity autocorrelation interferometer,” Appl. Opt. 17(22), 3534–3535 (1978). [CrossRef] [PubMed]
  10. K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, and A. Dienes, “400-Hz mechanical scanning optical delay line,” Opt. Lett. 18(7), 558–560 (1993). [CrossRef] [PubMed]
  11. X. Liu, M. J. Cobb, and X. Li, “Rapid scanning all-reflective optical delay line for real-time optical coherence tomography,” Opt. Lett. 29(1), 80–82 (2004). [CrossRef] [PubMed]
  12. P.-L. Hsiung, X. Li, C. Chudoba, I. Hartl, T. H. Ko, and J. G. Fujimoto, “High-speed path-length scanning with a multiple-pass cavity delay line,” Appl. Opt. 42(4), 640–648 (2003). [CrossRef] [PubMed]
  13. J. Xu, Z. Lu, and X.-C. Zhang, “Compact involute optical delay line,” Electron. Lett. 40(19), 1218–1219 (2004). [CrossRef]
  14. M. Salhi, F. Rutz, T. Kleine-Ostmann, V. Petukhov, C. Metz, and M. Koch, “Spiral Optical Delay Line,” Proceedings of Optical Terahertz Science and Technology (Orlando, USA, March 2005).
  15. P. A. Elzinga, R. J. Kneisler, F. E. Lytle, Y. Jiang, G. B. King, and N. M. Laurendeau, “Pump/probe method for fast analysis of visible spectral signatures utilizing asynchronous optical sampling,” Appl. Opt. 26(19), 4303–4309 (1987). [CrossRef] [PubMed]
  16. A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Köhler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett. 88(4), 041117 (2006). [CrossRef]
  17. V. A. Stoica, Y.-M. Sheu, D. A. Reis, and R. Clarke, “Wideband detection of transient solid-state dynamics using ultrafast fiber lasers and asynchronous optical sampling,” Opt. Express 16(4), 2322–2335 (2008). [CrossRef] [PubMed]
  18. T. Hochrein, N. Krumbholz, and M. Koch, “Verfahren zum Erzeugen zweier optischer Pulse mit variablen, zeitlichen Pulsabstand,“ PCT Patent Application No. PCT/DE 2009/000662 (2009).
  19. E. Hecht, “Optics,” 4th ed. (Addison-Wesley Longman, Amsterdam, Netherlands, 2003).
  20. H. Menlo Systems Gmb, http://www.menlosystems.com

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited