OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 2 — Jan. 18, 2010
  • pp: 551–559

Optimized optical trapping of gold nanoparticles

Faegheh Hajizadeh and S.Nader S.Reihani  »View Author Affiliations

Optics Express, Vol. 18, Issue 2, pp. 551-559 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (466 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Metallic nanoparticles are of significant interest due to their particular optical and biological applications. Gold nanoparticles are proven to be excellent candidate for in vivo micro-manipulation using Optical Tweezers. This manuscript reports on stable 3-D trapping of 9.5–254nm gold nanospheres using substantially decreased laser power. The lower limit is ∼2 times smaller than previous record. 5.4nm gold nanospheres were trapped for only 2–3 seconds. For the first time, our experimental data verify the volume corrected Rayleigh model for particles smaller than 100nm in diameter. Measuring the maximum applicable force for gold nanoparticles, we have shown that a few tens of milli-Watts of laser power can produce pico-Newton range forces.

© 2010 Optical Society of America

OCIS Codes
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(160.4236) Materials : Nanomaterials
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: October 23, 2009
Revised Manuscript: November 12, 2009
Manuscript Accepted: November 18, 2009
Published: January 4, 2010

Virtual Issues
Vol. 5, Iss. 3 Virtual Journal for Biomedical Optics

Faeghe Hajizadeh and S.Nader S.Reihani, "Optimized optical trapping of gold nanoparticles," Opt. Express 18, 551-559 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie "In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags," Nat. Biotechnol. 26,83-90 (2008). [CrossRef]
  2. J. D. Gibson, B. P. Khanal, and E. R. Zubarev, "Paclitaxel-Functionalized Gold Nanoparticles," J. Am. Chem. Soc. 129,11653-11661 (2007). [CrossRef] [PubMed]
  3. W. L. Leong, P. S. Lee, S. G. Mhaisalkar, T. P. Chen, and A. Dodabalapur, "Charging phenomena in pentacenegold nanoparticle memory device," Appl. Phys. Lett. 90,042906 (2007). [CrossRef]
  4. J. Zhang, J. Du, B. Han, Z. Liu, T. Jiang, and Z. Zhang, "Sonochemical formation of single-crystalline gold nanobelts," Angew. Chem. Int. Ed. 45,1116-1119 (2006). [CrossRef]
  5. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11288-290 (1986). [CrossRef] [PubMed]
  6. A. Ashkin, and J. M. Dzeiedzic, "Optical trapping and manipulation of viruses and bacteria," Science 235,1517-1520 (1987). [CrossRef] [PubMed]
  7. C. Bustamante, Z. Bryant, and S. B. Smith, "Ten years of tension: single-molecule DNA mechanics," Nature (London) 421,423-427 (2003). [CrossRef]
  8. T. M. Hansen, S. N. S. Reihani, L. B. Oddershede, and M. A. Sørensen, "Correction between mechanical strength of messenger RNA pseudoknots and ribosomal frame-shifting," PNAS 104,5830-5835 (2007). [CrossRef] [PubMed]
  9. K. Svoboda and S. M. Block, "Optical trapping of metallic Rayleigh particles," Opt. Lett. 19,930-932 (1994). [CrossRef] [PubMed]
  10. Y. Seol, A. E. Carpenter, and T. T. Perkins, "Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating," Opt. Lett. 31,2429-2431 (2006). [CrossRef] [PubMed]
  11. H. Furukawa and I. Yamaguchi, "Optical trapping of metallic particles by a fixed Gaussian beam," Opt. Lett. 23,216-218 (1998). [CrossRef]
  12. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, "Expanding the optical trapping range of gold nanoparticles," Nano. Lett. 5,1937-1942 (2005). [CrossRef] [PubMed]
  13. L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, "Efficient optical trapping and visualization of silver nanoparticles," Nano. Lett. 8,1486-1491 (2008). [CrossRef] [PubMed]
  14. C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, "Quantitative Optical Trapping of Single Gold Nanorods," Nano. Lett. 8,2998-3003 (2008). [CrossRef] [PubMed]
  15. R. Saija, P. Denti, F. Borghese, O. M. Marago, and M. A. Iati, "Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres," Opt. Express 17,10231-10241 (2009). [CrossRef] [PubMed]
  16. K. Berg-Sørensen, H. Flyvbjerg, "Power spectrum analysis for optical tweezers," Rev. Sci. Instrum. 75,594-612 (2004). [CrossRef]
  17. S. Inasava, M. Sugiyama, and Y. Yamaguchi, "Laser-Induced shape transformation of gold nanoparticles below the melting point: The effect of surface melting," J. Phys. Chem. B. 109,3104-3111 (2005). [CrossRef]
  18. F. Gittes and C. F. Schmidt, "Interference model for back-focal-plane displacement detection in optical tweezers," Opt. Lett. 23,7-9 (1998). [CrossRef]
  19. S. N. S. Reihani, M. A. Charsooghi, H. R. Khalesifard, and R. Golestanian, "Efficient in-depth trapping with an oil-immersion objective lens," Opt. Lett. 31,766-768 (2006). [CrossRef] [PubMed]
  20. S. N. S. Reihani and L. B. Oddershede, "Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations," Opt. Lett. 32,1998-2000 (2007). [CrossRef] [PubMed]
  21. B. Lin, J. Yu, and S. A. Rice, "Direct measurements of constrained Brownian motion of an isolated sphere between two walls," Phys. Rev. E 62,3909-3919 (2000). [CrossRef]
  22. A. S. Zelenina, R. Quidant, G. Badenes, and M. Nieto-Vesperinas, "Tunable optical sorting and manipulation of nanoparticles via plasmon excitation," Opt. Lett. 31,2054-2056 (2006). [CrossRef] [PubMed]
  23. P. M. Hansen, I. M. Tolić-Nørrelykke, H. Flyvbjerg, and K. B. Sørensen, "tweezercalib 2.0: Faster version of MatLab package for precise calibration of optical tweezers," Comput. Phys. Commun 174,518-520 (2006). [CrossRef]
  24. A. Rohrbach, "Stiffness of Optical Traps: Quantitative Agreement between Experiment and Electromagnetic Theory," Phys. Rev. Lett. 95,168102 (2005). [CrossRef] [PubMed]
  25. S.N.S. Reihani, H.R. Khalesifard, and R. Golestanian, "Measuring lateral efficiency of optical traps: The effect of tube length," Opt. Commun. 259,204-211 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited