OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 20 — Sep. 27, 2010
  • pp: 20912–20917

Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance

Yuehui Lu, Joo Yull Rhee, Won Ho Jang, and Young Pak Lee  »View Author Affiliations


Optics Express, Vol. 18, Issue 20, pp. 20912-20917 (2010)
http://dx.doi.org/10.1364/OE.18.020912


View Full Text Article

Enhanced HTML    Acrobat PDF (1384 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Plasmonic electromagnetically-induced transparency (EIT) can be excited by a single optical field unlike EIT in atom system, since the coupling between the bright and the dark modes is inherently induced through the near-field interaction in metamaterials. As a result, the complexity of the experimental realization can be reduced significantly, while the tunability is lost inevitably. We suggest a scheme that the plasmonic EIT is possible to be actively manipulated even by the single optical field. The bright and the dark modes are selective to be either coupled or uncoupled, depending on the angle of incidence. Even though the mechanical control has the disadvantage for high-speed applications, it paves the way for active manipulation of plasmonic EIT and benefits the clarification of its origin.

© 2010 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: June 30, 2010
Revised Manuscript: September 1, 2010
Manuscript Accepted: September 1, 2010
Published: September 17, 2010

Citation
Yuehui Lu, Joo Yull Rhee, Won Ho Jang, and Young Pak Lee, "Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance," Opt. Express 18, 20912-20917 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-20-20912


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: optics in coherent media," Rev. Mod. Phys. 77, 633-673 (2005). [CrossRef]
  2. C. L. G. Alzar, M. A. G. Martinez, and P. Nussenzveig, "Classical analog of electromagnetically induced transparency," Am. J. Phys. 70, 37-41 (2002). [CrossRef]
  3. T. Opatrny, and D.-G. Welsch, "Coupled cavities for enhancing the cross-phase-modulation in electromagnetically induced transparency," Phys. Rev. A 64, 023805 (2001). [CrossRef]
  4. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, "Coupled-resonator-induced transparency," Phys. Rev. A 69, 063804 (2004). [CrossRef]
  5. A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, "Induced transparency and absorption in coupled whispering-gallery microresonators," Phys. Rev. A 71, 043804 (2005). [CrossRef]
  6. L. Maleki, A. B. Matsko, A. A. Savchenkov, and V. S. Ilchenko, "Tunable delay line with interacting whispering gallery-mode resonators," Opt. Lett. 29, 626-628 (2004). [CrossRef] [PubMed]
  7. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, "Plasmon-induced transparency in metamaterials," Phys. Rev. Lett. 101, 047401 (2008). [CrossRef] [PubMed]
  8. N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, "Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit," Nat. Mater. 8, 758-762 (2009). [CrossRef] [PubMed]
  9. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, and S. A. Maier, "Fano resonances in individual coherent plasmonic nanocavities," Nano Lett. 9, 1663-1667 (2009). [CrossRef] [PubMed]
  10. H. Xu, Y. Lu, Y. P. Lee, and B. S. Ham, "Studies of electromagnetically induced transparency in metamaterials," Opt. Express 18, 17736-17747 (2010). [CrossRef] [PubMed]
  11. X.-R. Su, Z.-S. Zhang, L.-H. Zhang, Q.-Q. Li, C.-C. Chen, Z.-J. Yang, and Q.-Q. Wang, "Plasmonic interferences and optical modulations in dark-bright-dark plasmon resonators," Appl. Phys. Lett. 96, 043113 (2010). [CrossRef]
  12. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, "Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry," Phys. Rev. Lett. 99, 147401 (2007). [CrossRef] [PubMed]
  13. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, "Metamaterial analog of electromagnetically induced transparency," Phys. Rev. Lett. 101, 253903 (2008). [CrossRef] [PubMed]
  14. N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, "Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency," Appl. Phys. Lett. 94, 211902 (2009). [CrossRef]
  15. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, "Low-loss metamaterials based on classical electromagnetically induced transparency," Phys. Rev. Lett. 102, 053901 (2009). [CrossRef] [PubMed]
  16. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, "Planar designs for electromagnetically induced transparency in metamaterials," Opt. Express 17, 5595-5605 (2009). [CrossRef] [PubMed]
  17. R. Singh, C. Rockstuhl, F. Lederer, and W. L. Zhang, "Coupling between a dark and a bright eigenmode in a terahertz metamaterial," Phys. Rev. B 79, 085111 (2009). [CrossRef]
  18. S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, "Analogue of electromagnetically induced transparency in a terahertz metamaterial," Phys. Rev. B 80, 153103 (2009). [CrossRef]
  19. V. Yannopapas, E. Paspalakis, and N. V. Vitanov, "Electromagnetically induced transparency and slow light in an array of metallic nanoparticles," Phys. Rev. B 80, 035104 (2009). [CrossRef]
  20. S. Linden, J. Kuhl, and H. Giessen, "Controlling the interaction between light and gold nanoparticles: selective suppression of extinction," Phys. Rev. Lett. 86, 4688-4691 (2001). [CrossRef] [PubMed]
  21. Z. Liu, J. M. Steele, H. Lee, and X. Zhang, "Tuning the focus of a plasmonic lens by the incident angle," Appl. Phys. Lett. 88, 171108 (2006). [CrossRef]
  22. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, "Experimental demonstration of frequency-agile terahertz metamaterials," Nat. Photonics 2, 295-298 (2008). [CrossRef]
  23. M. I. Stockman, S. V. Faleev, and D. J. Bergman, "Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?" Phys. Rev. Lett. 87, 167401 (2001). [CrossRef] [PubMed]
  24. T. J. Davis, K. C. Vernon, and D. E. Gomez, "Designing plasmonic systems using optical coupling between nanoparticles," Phys. Rev. B 79, 155423 (2009). [CrossRef]
  25. S. A. Maier, "The benefits of darkness," Nat. Mater. 8, 699-700 (2009). [CrossRef] [PubMed]
  26. R. Marques, F. Medina, and R. Rafii-El-Idrissi, "Role of bianisotropy in negative permeability and left-handed metamaterials," Phys. Rev. B 65, 144440 (2002). [CrossRef]
  27. E. Hecht, Optics, 4th ed. (Addison Wesley, San Francisco, 2002).
  28. Y. Lu, M. H. Cho, J. B. Kim, G. J. Lee, Y. P. Lee, and J. Y. Rhee, "Magneto-optical enhancement through gyrotropic gratings," Opt. Express 16, 5378-5384 (2008). [CrossRef] [PubMed]
  29. X. Jin, Y. Lu, H. Zheng, Y. P. Lee, J. Y. Rhee, and W. H. Jang, "Plasmonic electromagnetically-induced transparency in symmetric structures," Opt. Express 18, 13396-13401 (2010). [CrossRef] [PubMed]
  30. Q.-H. Park, "Optical antennas and plasmonics," Contemp. Phys. 50, 407-423 (2009). [CrossRef]
  31. L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007). [CrossRef] [PubMed]
  32. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999).
  33. A. K. Sarychev, G. Shvets, and V. M. Shalaev, "Magnetic plasmon resonance," Phys. Rev. E 73, 036609 (2006). [CrossRef]
  34. A. K. Sarychev, and G. Tartakovsky, "Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser," Phys. Rev. B 75, 085436 (2007). [CrossRef]
  35. M. Burresi, D. Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, "Probing the magnetic field of light at optical frequencies," Science 326, 550-553 (2009). [CrossRef] [PubMed]
  36. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95, 203901 (2005). [CrossRef] [PubMed]
  37. T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, "Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems," Phys. Rev. B 80, 195415 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited