OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 20 — Sep. 27, 2010
  • pp: 21219–21224

Vectorial polariton solitons in semiconductor microcavities

W. L. Zhang and S. F. Yu  »View Author Affiliations

Optics Express, Vol. 18, Issue 20, pp. 21219-21224 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (845 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents numerical studies of vectorial polariton solitons in semiconductor microcavities. In the simulation, polarization degree of freedom of the polariton fields is taken into consideration. In the bistable regime, bright and/or dark solitons are found to bifurcate from the homogonous solutions of the two circular polarization modes. The combinations of solitons in the two polarization directions can be bright-dark, dark-bright, bright-bright, and dark-dark.

© 2010 OSA

OCIS Codes
(260.5430) Physical optics : Polarization
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Optics at Surfaces

Original Manuscript: July 13, 2010
Revised Manuscript: August 16, 2010
Manuscript Accepted: August 16, 2010
Published: September 22, 2010

W. L. Zhang and S. F. Yu, "Vectorial polariton solitons in semiconductor microcavities," Opt. Express 18, 21219-21224 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992). [CrossRef] [PubMed]
  2. A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaître, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Viña, “Collective fluid dynamics of a polariton condensate in a semiconductor microcavity,” Nature 457(7227), 291–295 (2009). [CrossRef] [PubMed]
  3. A. Baas, J. Ph. Karr, H. Eleuch, and E. Giacobino, “Optical bistability in semiconductor microcavities,” Phys. Rev. A 69(2), 023809 (2004). [CrossRef]
  4. D. Bajoni, E. Semenova, A. Lemaître, S. Bouchoule, E. Wertz, P. Senellart, S. Barbay, R. Kuszelewicz, and J. Bloch, “Optical bistability in a GaAs-based polariton diode,” Phys. Rev. Lett. 101(26), 266402 (2008). [CrossRef] [PubMed]
  5. C. Ciuti and I. Carusotto, “Quantum fluid effects and parametric instabilities in microcavities,” Phys. Status Solidi 242(11), 2224–2245 (2005). [CrossRef]
  6. D. Sarchi, M. Wouter, and V. Savona, “Polariton parametric photoluminescence in spatially inhomogeneous systems,” Phys. Rev. B 79(16), 165315 (2009). [CrossRef]
  7. K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, L. S. Dang, and B. Deveaud-Plédran, “Quantized vortices in an exciton-polariton condensate,” Nat. Phys. 4(9), 706–710 (2008). [CrossRef]
  8. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316(5827), 1007–1010 (2007). [CrossRef] [PubMed]
  9. Y. Larionova, W. Stolz, and C. O. Weiss, “Optical bistability and spatial resonator solitons based on exciton-polariton nonlinearity,” Opt. Lett. 33(4), 321–323 (2008). [CrossRef] [PubMed]
  10. A. V. Yulin, O. A. Egorov, F. Lederer, and D. V. Skryabin, “Dark polariton solitons in semiconductor microcavities,” Phys. Rev. A 78(6), 061801 (2008). [CrossRef]
  11. A. R. Davoyan, I. V. Shadrivov, and Y. S. Kivshar, “Self-focusing and spatial plasmon-polariton solitons,” Opt. Express 17(24), 21732–21737 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-24-21732 . [CrossRef] [PubMed]
  12. G. Tissoni, L. Spinelli, L. Lugiato, M. Brambilla, I. Perrini, and T. Maggipinto, “Spatio-temporal dynamics in semiconductor microresonators with thermal effects,” Opt. Express 10(19), 1009–1017 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-19-1009 . [PubMed]
  13. Y. Tanguy, T. Ackemann, W. J. Firth, and R. Jäger, “Realization of a semiconductor-based cavity soliton laser,” Phys. Rev. Lett. 100(1), 013907 (2008). [CrossRef] [PubMed]
  14. X. Hachair, G. Tissoni, H. Thienpont, and K. Panajotov, “Linearly polarized bistable localized structure in medium-size vertical-cavity surface-emitting lasers,” Phys. Rev. B 79, 011801 (2009).
  15. O. A. Egorov, D. V. Skryabin, A. V. Yulin, and F. Lederer, “Bright cavity polariton solitons,” Phys. Rev. Lett. 102(15), 153904 (2009). [CrossRef] [PubMed]
  16. I. A. Shelykh, Y. G. Rubo, G. Malpuech, D. D. Solnyshkov, and A. Kavokin, “Polarization and propagation of polariton condensates,” Phys. Rev. Lett. 97(6), 066402 (2006). [CrossRef] [PubMed]
  17. C. Leyder, T. C. H. Liew, A. V. Kavokin, I. A. Shelykh, M. Romanelli, J. Ph. Karr, E. Giacobino, and A. Bramati, “Interference of coherent polariton beams in microcavities: polarization-controlled optical gates,” Phys. Rev. Lett. 99(19), 196402 (2007). [CrossRef]
  18. N. A. Gippius, I. A. Shelykh, D. D. Solnyshkov, S. S. Gavrilov, Y. G. Rubo, A. V. Kavokin, S. G. Tikhodeev, and G. Malpuech, “Polarization multistability of cavity polaritons,” Phys. Rev. Lett. 98(23), 236401 (2007). [CrossRef] [PubMed]
  19. D. V. Skryabin, O. A. Egorov, A. V. Gorbach, and F. Lederer, “One-dimensional polariton solitons and soliton waveguiding in microcavities,” Superlattices Microstruct. 47(1), 5–9 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited