OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 20 — Sep. 27, 2010
  • pp: 21261–21268

Pulse propagation in a decoupled two-core fiber

M. Liu and K. S. Chiang  »View Author Affiliations

Optics Express, Vol. 18, Issue 20, pp. 21261-21268 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1008 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is known that a decoupled two-core fiber can prevent monochromatic light at a specific wavelength (the decoupling wavelength) launched into one core from coupling to the other core. In this paper, we show that a pulse at the decoupling wavelength launched into one core of such a fiber inevitably splits into two pairs of pulses propagating in the two cores along the fiber. The minimum distance required for pulse splitting to be visible is inversely proportional to the coupling-coefficient dispersion in the fiber and linearly proportional to the pulse width. It would take only several centimeters of a recently demonstrated decoupled two-core photonic-bandgap fiber to observe the pulse-splitting effect with a 100-fs pulse. We also study the effects of self-phase modulation on the pulse propagation dynamics in a decoupled two-core fiber in both the normal and anomalous dispersion regimes.

© 2010 OSA

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.0190) Nonlinear optics : Nonlinear optics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 6, 2010
Manuscript Accepted: September 6, 2010
Published: September 22, 2010

M. Liu and K. S. Chiang, "Pulse propagation in a decoupled two-core fiber," Opt. Express 18, 21261-21268 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am. 62(11), 1267–1277 (1972). [CrossRef]
  2. C. G. Someda, “Antiresonant decoupling of parallel dielectric waveguides,” Opt. Lett. 16(16), 1240–1242 (1991). [CrossRef] [PubMed]
  3. S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2D photonic crystal waveguides,” IEEE J. Quantum Electron. 38(1), 47–53 (2002). [CrossRef]
  4. F. S.-S. Chien, Y.-J. Hsu, W.-F. Hsieh, and S.-C. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express 12(6), 1119–1125 (2004). [CrossRef] [PubMed]
  5. Y. Tanaka, H. Nakamura, Y. Sugimoto, N. Ikeda, K. Asakawa, and K. Inoue, “Coupling properties in a 2-D photonic crystal slab directional coupler with a triangular lattice of air holes,” IEEE J. Quantum Electron. 41(1), 76–84 (2005). [CrossRef]
  6. Z. Wang, G. Kai, Y. Liu, J. Liu, C. Zhang, T. Sun, C. Wang, W. Zhang, S. Yuan, and X. Dong, “Coupling and decoupling of dual-core photonic bandgap fibers,” Opt. Lett. 30(19), 2542–2544 (2005). [CrossRef] [PubMed]
  7. Z. Wang, T. Taru, T. A. Birks, J. C. Knight, Y. Liu, and J. Du, “Coupling in dual-core photonic bandgap fibers: theory and experiment,” Opt. Express 15(8), 4795–4803 (2007). [CrossRef] [PubMed]
  8. K. S. Chiang, “Theory of pulse propagation in optical directional couplers,” J. Nonlinear Opt. Phys. Mater. 14(2), 133–147 (2005). [CrossRef]
  9. K. S. Chiang, “Intermodal dispersion in two-core optical fibers,” Opt. Lett. 20(9), 997–999 (1995). [CrossRef] [PubMed]
  10. K. S. Chiang, “Coupled-mode equations for pulse switching in parallel waveguides,” IEEE J. Quantum Electron. 33(6), 950–954 (1997). [CrossRef]
  11. K. S. Chiang, “Propagation of short optical pulses in directional couplers with Kerr nonlinearity,” J. Opt. Soc. Am. B 14(6), 1437–1443 (1997). [CrossRef]
  12. K. S. Chiang, Y. T. Chow, D. J. Richardson, D. Traverner, L. Dong, L. Reekie, and K. M. Lo, “Experimental demonstration of intermodal dispersion in a two-core optical fiber,” Opt. Commun. 143(4-6), 189–192 (1997). [CrossRef]
  13. P. Peterka, P. Honzatko, J. Kanka, V. Matejec, and I. Kasik, “Generation of high-repetition rate pulse trains in a fiber laser through a twin-core fiber,” Proc. SPIE 5036, 376–381 (2003). [CrossRef]
  14. M. Liu, K. S. Chiang, and P. Shum, “Evaluation of intermodal dispersion in a two-core fiber with non-identical cores,” Opt. Commun. 219(1-6), 171–176 (2003). [CrossRef]
  15. P. Shum, K. S. Chiang, and W. A. Gambling, “Switching dynamics of short optical pulses in a nonlinear directional coupler,” IEEE J. Quantum Electron. 35(1), 79–83 (1999). [CrossRef]
  16. P. M. Ramos and C. R. Paiva, “All-optical pulse switching in twin-core fiber couplers with intermodal dispersion,” IEEE J. Quantum Electron. 35(6), 983–989 (1999). [CrossRef]
  17. S. C. Tsang, K. S. Chiang, and K. W. Chow, “Soliton interaction in a two-core optical fiber,” Opt. Commun. 229(1-6), 431–439 (2004). [CrossRef]
  18. M. Liu, K. S. Chiang, and P. Shum, “Propagation of short pulses in an active nonlinear two-core optical fiber,” IEEE J. Quantum Electron. 40(11), 1597–1602 (2004). [CrossRef]
  19. M. Liu and K. S. Chiang, “Propagation of ultrashort pulses in a nonlinear two-core photonic crystal fiber,” Appl. Phys. B 98(4), 815–820 (2010). [CrossRef]
  20. H. Nakatsuka, D. Grischkowsky, and A. C. Balant, “Nonlinear picosecond-pulse propagation through optical fibers with positive group velocity dispersion,” Phys. Rev. Lett. 47(13), 910–913 (1981). [CrossRef]
  21. W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett. 10(9), 457–459 (1985). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited