OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 20 — Sep. 27, 2010
  • pp: 21269–21283

Generalized atmospheric turbulence MTF for wave propagating through non-Kolmogorov turbulence

Cui Lin-yan, Xue Bin-dang, Cao Xiao-guang, Dong Jian-kang, and Wang Jie-ning  »View Author Affiliations


Optics Express, Vol. 18, Issue 20, pp. 21269-21283 (2010)
http://dx.doi.org/10.1364/OE.18.021269


View Full Text Article

Enhanced HTML    Acrobat PDF (1148 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A generalized exponential spectrum model is derived, which considers finite turbulence inner and outer scales and has a general spectral power law value between the range 3 to 5 instead of standard power law value 11/3. Based on this generalized spectrum model, a new generalized long exposure turbulence modulation transfer function (MTF) is obtained for optical plane and spherical wave propagating through horizontal path in weak fluctuation turbulence. When the inner scale and outer scale are set to zero and infinite, respectively, the new generalized MTF is reduced to the classical generalized MTF derived from the non-Kolmogorov spectrum.

© 2010 OSA

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(110.4100) Imaging systems : Modulation transfer function
(110.0115) Imaging systems : Imaging through turbulent media

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: August 9, 2010
Revised Manuscript: September 1, 2010
Manuscript Accepted: September 5, 2010
Published: September 22, 2010

Citation
Cui Lin-yan, Xue Bin-dang, Cao Xiao-guang, Dong Jian-kang, and Wang Jie-ning, "Generalized atmospheric turbulence MTF for wave propagating through non-Kolmogorov turbulence," Opt. Express 18, 21269-21283 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-20-21269


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation, (trans.for NOAA by Israel Program for Scientific Translations, Jerusalem, 1971).
  2. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media. (SPIE Optical Engineering Press, Bellingham, 2005).
  3. D. T. Kyrazis, J. Wissler, D. B. Keating, A. J. Preble, and K. P. Bishop, “Measurement of optical turbulence in the upper troposphere and lower stratosphere,” Proc. SPIE 2120, 43–55 (1994). [CrossRef]
  4. M. S. Belen’kii, S. J. Karis, J. M. Brown, and R. Q. Fugate, “Experimental study of the effect of non-Kolmogorov stratospheric turbulence on star image motion,” Proc. SPIE 3126, 113–123 (1997). [CrossRef]
  5. M. S. Belen’kii, E. Cuellar, K. A. Hughes, and V. A. Rye, “Experimental study of spatial structure of turbulence at Maui Space Surveillance Site (MSSS),” Proc. SPIE 6304, 63040U (2006). [CrossRef]
  6. A. Zilberman, E. Golbraikh, N. S. Kopeika, A. Virtser, I. Kupershmidt, and Y. Shtemler, “Lidar study of aerosol turbulence characteristics in the troposphere: Kolmogorov and non-Kolmogorov trubulence,” Atmos. Res. 88(1), 66–77 (2008). [CrossRef]
  7. A. Zilberman, and N. S. Kopeika, “Slant-path generalized atmospheric MTF,” in Proceedings of IEEE 25th Convention of Electrical and Electronics Engineers (Institute of Electrical and Electronics Engineers, Israel, 2008), pp. 217–221.
  8. N. S. Kopeika, A. Zilberman, and E. Golbraikh, “Generalized atmospheric turbulence: implications regarding imaging and communications,” Proc. SPIE 7588, 758808 (2010). [CrossRef]
  9. I. Toselli, L. C. Andrews, R. L. Phillips, and V. Ferrero, “Angle of Arrival Fluctuations for Free Space Laser Beam Propagation through non Kolmogorov turbulence,” Proc. SPIE 6551, 65510E (2007). [CrossRef]
  10. L. C. Andrews, Special Functions of Mathematics for Engineers, 2nd ed. (SPIE Optical Engineering Press, Bellingham, Wash., 1998).
  11. R. E. Hufnagel and N. R. Stanley, “Modulation Transfer Function associated with Image Transmission through Turbulent Media,” J. Opt. Soc. Am. 54(1), 52–61 (1964). [CrossRef]
  12. D. L. Fried, “Optical Resolution Through a Randomly Inhomogeneous Medium for Very Long and very Short Exposures,” J. Opt. Soc. Am. 56(10), 1372–1379 (1966). [CrossRef]
  13. B. E. Stribling, B. M. Welsh, and M. C. Roggemann, “Optical Propagation in non-Kolmogorov Atmospheric Turbulence,” Proc. SPIE 2471, 181–196 (1995). [CrossRef]
  14. A. Zilberman, E. Golbraikh, and N. S. Kopeika, “Propagation of electromagnetic waves in Kolmogorov and non-Kolmogorov atmospheric turbulence: three-layer altitude model,” Appl. Opt. 47(34), 6385–6391 (2008). [CrossRef] [PubMed]
  15. W. B. Miller, J. C. Ricklin, and L. C. Andrews, “Log-amplitude variance and wave structure function: a new perspective for Gaussian beams,” J. Opt. Soc. Am. A 10(4), 661–672 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited