OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 22080–22089

Highly photo-stable dye doped solid-state distributed-feedback (DFB) channeled waveguide lasers by a pen-drawing technique

Yu Yang, Ryo Goto, Soichiro Omi, Kenchi Yamashita, Hirofumi Watanabe, Masaya Miyazaki, and Yuji Oki  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 22080-22089 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1507 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Pyrromethene dyes doped polymeric channeled waveguide lasers with permanent DFB structures were fabricated via a novel pen-drawing technique with the patterned polydimethylsiloxane (PDMS) chips fabricated through a casting process as the substrates. With the high resolution dispensers, dye doped high viscosity pre-polymers were written into the PDMS grooves and the cross-section of the channeled waveguides could be controlled by both the polymer composition and the pen-drawing parameters. Highly stable laser output with 4.8 × 106 pulses of laser lifetime at 500 Hz of pump repetition rate has been obtained, which is suggested to be among one of the best results of pyrromethene 567 (PM567) up to date.

© 2010 OSA

OCIS Codes
(140.2050) Lasers and laser optics : Dye lasers
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(160.3380) Materials : Laser materials
(230.7380) Optical devices : Waveguides, channeled
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 1, 2010
Revised Manuscript: August 28, 2010
Manuscript Accepted: September 12, 2010
Published: October 4, 2010

Yu Yang, Ryo Goto, Soichiro Omi, Kenchi Yamashita, Hirofumi Watanabe, Masaya Miyazaki, and Yuji Oki, "Highly photo-stable dye doped solid-state distributed-feedback (DFB) channeled waveguide lasers by a pen-drawing technique," Opt. Express 18, 22080-22089 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Costela, I. García-Moreno, R. Sastre, D. W. Coutts, and C. E. Webb, “High-repetition-rate polymeric solid-state dye lasers pumped by a copper-vapor laser,” Appl. Phys. Lett. 79, 452–454 (2001).
  2. R. E. Hermes, T. H. Allik, S. Chandra, and J. A. Hutchinson, “High-efficiency pyrromethene doped solid-state dye lasers,” Appl. Phys. Lett. 63(7), 877–879 (1993).
  3. R. Bornemann, U. Lemmer, and E. Thiel, “Continuous-wave solid-state dye laser,” Opt. Lett. 31(11), 1669–1671 (2006). [PubMed]
  4. T. H. Nhung, M. Canva, T. T. A. Dao, F. Chaput, A. Brun, N. D. Hung, and J.-P. Boilot, “Stable doped hybrid sol-gel materials for solid-state dye laser,” Appl. Opt. 42(12), 2213–2218 (2003). [PubMed]
  5. Y. Yang, M. Q. Wang, G. D. Qian, Z. Y. Wang, and X. P. Fan, “Laser properties and photostabilities of laser dyes doped in ORMOSILs,” Opt. Mater. 24(4), 621–628 (2004).
  6. H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, A. V. Reznichenko, and G. P. Roskova, “Efficient solid-state dye lasers based on polymer-filled microporous glass,” Proc. SPIE 3929, 133–144 (2000).
  7. M. D. Rahn, T. A. King, A. A. Gorman, and I. Hamblett, “Photostability enhancement of Pyrromethene 567 and Perylene Orange in oxygen-free liquid and solid dye lasers,” Appl. Opt. 36(24), 5862–5871 (1997). [PubMed]
  8. O. García, R. Sastre, D. del Agua, A. Costela, and I. García-Moreno, “New fluorinated polymers doped with BODIPY chromophore as highly efficient and photostable optical materials,” Chem. Mater. 18(3), 601–602 (2006).
  9. O. García, R. Sastre, D. del Agua, A. Costela, I. García-Moreno, F. López Arbeloa, J. Bañuelos Prieto, and I. López Arbeloa, “Laser and physical properties of BODIPY chromophores in new fluorinated polymeric materials,” J. Phys. Chem. C 111(3), 1508–1516 (2007).
  10. Y. Yang, G. D. Qian, Z. Y. Wang, and M. Q. Wang, “Influence of the thickness and composition of the solid-state dye laser media on the laser properties,” Opt. Commun. 204, 277–282 (2002).
  11. A. Costela, I. García-Moreno, D. del Agua, O. García, and R. Sastre, “Silicon-containing organic matrices as hosts for highly photostable solid-state dye lasers,” Appl. Phys. Lett. 85(12), 2160–2162 (2004).
  12. R. Sastre, V. Martin, L. Garrido, J. L. Chiara, B. Trastoy, O. García, A. Costela, and I. Garica-Moreno, “Dye-Doped Polyhedral Oligomeric Silsesquioxane (POSS)-Modified Polymeric Matrices for Highly Efficient and Photostable Solid-State Lasers,” Adv. Funct. Mater. 19(20), 3307–3316 (2009).
  13. H. Watanabe, Y. Oki, and T. Omatsu, “Highly Efficient Long-Lifetime Dual-Layered Waveguide Dye Laser Containing SiO2 Nanoparticle-Dispersed Random Scattering Active Media,” Jpn. J. Appl. Phys. 48(11), 112503 (2009).
  14. F. J. Duarte and R. O. James, “Tunable solid-state lasers incorporating dye-doped, polymer-nanoparticle gain media,” Opt. Lett. 28(21), 2088–2090 (2003). [PubMed]
  15. M. Ahmad, T. A. King, D. K. Ko, B. H. Cha, and J. Lee, “Photostability of lasers based on pyrromethene 567 in liquid and solid-state host media,” Opt. Commun. 203(3-6), 327–334 (2002).
  16. N. Tanaka, N. Barashkov, J. Heath, and W. N. Sisk, “Photodegradation of polymer-dispersed perylene di-imide dyes,” Appl. Opt. 45(16), 3846–3851 (2006). [PubMed]
  17. Y. Yang, G. D. Qian, D. L. Su, Z. Y. Wang, and M. Q. Wang, “Energy transfer mechanism between laser dyes doped in ORMOSILs,” Chem. Phys. Lett. 402(4-6), 389–394 (2005).
  18. W. N. Sisk and N. Tanaka, “Energy transfer and photodegradation of a Perylene Orange:LDS821 system in poly(methyl methacrylate),” Appl. Opt. 45(21), 5385–5390 (2006). [PubMed]
  19. Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Hybrid optoelectronics: A polymer laser pumped by a nitride light-emitting diode,” Appl. Phys. Lett. 92(16), 163306 (2008).
  20. A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express 14(20), 9211–9216 (2006). [PubMed]
  21. H. Sakata and H. Takeuchi, “Diode-pumped polymeric dye lasers operating at a pump power level of 10 mW,” Appl. Phys. Lett. 92(11), 113310 (2008).
  22. H. Sakata, K. Yamashita, H. Takeuchi, and M. Tomiki, “Diode-pumped distributed-feedback dye laser with an organic-inorganic microcavity,” Appl. Phys. B 92(2), 243–246 (2008).
  23. Y. Oki, S. Miyamoto, M. Tanaka, D. Zou, and M. Maeda, “Long lifetime and high repetition rate operation from distributed feedback plastic waveguided dye lasers,” Opt. Commun. 214(1-6), 277–283 (2002).
  24. D. Lo, L. Shi, J. Wang, G. X. Zhang, and X. L. Zhu, “Zirconia and zirconia-organically modified silicate distributed feedback waveguide lasers tunable in the visible,” Appl. Phys. Lett. 81(15), 2707–2709 (2002).
  25. Y. Oki, Y. Ogawa, K. Yamashita, M. Miyazaki, and M. Maeda, “Integration of optical pumped dye laser on organic microflowcytometry chip,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 463(1), 131–140 (2007).
  26. K. Yamashita, A. Arimatsu, N. Takeuchi, M. Takayama, K. Oe, and H. Yanagi, “Multilayered solid-state organic laser for simultaneous multiwavelength oscillations,” Appl. Phys. Lett. 93(23), 233303 (2008).
  27. N. Nakai, M. Fukuda, and K. Mito, “Dual-beam distributed feedback solid-state dye laser with photoresist grating,” Jpn. J. Appl. Phys. 45(21), L543–L545 (2006).
  28. C. Ye, K. Y. Wong, Y. He, and X. Wang, “Distributed feedback sol-gel zirconia waveguide lasers based on surface relief gratings,” Opt. Express 15(3), 936–944 (2007). [PubMed]
  29. W. Holzer, A. Penzkofer, T. Pertsch, N. Danz, A. Bräuer, E. B. Kley, H. Tillmann, C. Bader, and H.-H. Hörhold, “Corrugated neat thin-film conjugated polymer distributed-feedback lasers,” Appl. Phys. B 74(4-5), 333–342 (2002).
  30. Y. Oki, S. Kataoka, N. Kamogawa, H. Watanabe, K. Yamashita, and M. Miyazaki, “Integration of Multiple-DFB Dye Lasers and Microflow-Channel on a Polymeric Chip,” Proc. Adv. Solid State Photonics (ASSP), 2008, MB3.
  31. N. Kamogawa, S. Kataoka, K. Sanada, M. Tanaka, H. Watanabe, and Y. Oki, “Development Thermo-Optical Quasi-Mode-Coupling DFB Dye Laser with Pen-Drawing Fabrication,” The 6th Asia Pacific Laser Symposium, 2008, pp. 54.
  32. Y. Yang, S. Kataoka, N. Kamogawa, H. Watanabe, K. Yamashita, M. Miyazaki, and Y. Oki, “Incorporable DFB Dye Lasers for Micro-flow-channels on a Polymeric Chip,” 2008 Conference on Lasers and Electro-Optics & Quantum Electronics and Laser Science Conference, 1–9 (2008) 1258–1259.
  33. F. Chen, J. Wang, C. Ye, W. Ni, J. Chan, Y. Yang, and D. Lo, “Near infrared distributed feedback lasers based on LDS dye-doped zirconia-organically modified silicate channel waveguides,” Opt. Express 13(5), 1643–1650 (2005). [PubMed]
  34. Y. Oki, K. Aso, D. Zuo, N. J. Vasa, and M. Maeda, “Wide-Wavelength-Range Operation of a Distributed-Feedback Dye Laser with a Plastic Waveguide,” Jpn. J. Appl. Phys. 41(Part 1, No. 11A), 6370–6374 (2002).
  35. A. Costela, I. Garcia-Moreno, L. Cerdan, V. Martin, O. Garcia, and R. Sastre, “Dye-Doped POSS Solutions: Random Nanomaterials for Laser Emission,” Adv. Mater. 21(41), 4163–4166 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited