OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 22128–22140

4π Focusing of TM01 beams under nonparaxial conditions

Alexandre April and Michel Piché  »View Author Affiliations


Optics Express, Vol. 18, Issue 21, pp. 22128-22140 (2010)
http://dx.doi.org/10.1364/OE.18.022128


View Full Text Article

Enhanced HTML    Acrobat PDF (1082 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Richards–Wolf theory and the complex point-source method are both used to express the phasor of the electric field of tightly focused beams, but the connection between these two approaches is not straightforward. In this paper, the Richards–Wolf vector field equations are used to find the electromagnetic field of a TM01 beam in the neighborhood of the focus of a 4π focusing system, such as a parabolic mirror with infinite transverse dimensions. Closed-form solutions are found for the distribution of the fields at any point in the vicinity of the focus; these solutions are identical to the electromagnetic field obtained with the complex source-point method in which sources are accompanied by sinks. This work thus establishes a connection between the Richards–Wolf theory and the complex sink/source model. The vector magnetic potential is introduced to simplify the computation of the six electromagnetic field components. The method is then used to find analytical expressions for the electromagnetic field of strongly focused TM01 beams affected by primary aberrations such as curvature of field, coma, astigmatism and spherical aberration.

© 2010 OSA

OCIS Codes
(220.1010) Optical design and fabrication : Aberrations (global)
(260.1960) Physical optics : Diffraction theory
(260.5430) Physical optics : Polarization
(350.5500) Other areas of optics : Propagation
(140.3295) Lasers and laser optics : Laser beam characterization

ToC Category:
Physical Optics

History
Original Manuscript: August 16, 2010
Revised Manuscript: September 13, 2010
Manuscript Accepted: September 14, 2010
Published: October 5, 2010

Citation
Alexandre April and Michel Piché, "4π Focusing of TM01 beams
under nonparaxial conditions," Opt. Express 18, 22128-22140 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-21-22128


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179(1-6), 1–7 (2000). [CrossRef]
  2. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91(23), 233901 (2003). [CrossRef] [PubMed]
  3. H. Dehez, M. Piché, and Y. De Koninck, “Enhanced resolution in two-photon imaging using a TM(01) laser beam at a dielectric interface,” Opt. Lett. 34(23), 3601–3603 (2009). [CrossRef] [PubMed]
  4. C. Varin, M. Piché, and M. A. Porras, “Acceleration of electrons from rest to GeV energies by ultrashort transverse magnetic laser pulses in free space,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 026603 (2005). [CrossRef] [PubMed]
  5. B. Richards and E. Wolf, “Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959). [CrossRef]
  6. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000). [CrossRef] [PubMed]
  7. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light – theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
  8. L. Novotny, and B. Hecht, Principles of nano-optics, (Cambridge University Press, 2006, Chap. 3).
  9. P. Varga and P. Török, “Focusing of electromagnetic waves by paraboloid mirrors. I. Theory,” J. Opt. Soc. Am. A 17(11), 2081–2089 (2000). [CrossRef]
  10. M. A. Lieb and A. J. Meixner, “A high numerical aperture parabolic mirror as imaging device for confocal microscopy,” Opt. Express 8(7), 458–474 (2001). [CrossRef] [PubMed]
  11. N. Davidson and N. Bokor, “High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens,” Opt. Lett. 29(12), 1318–1320 (2004). [CrossRef] [PubMed]
  12. J. Stadler, C. Stanciu, C. Stupperich, and A. J. Meixner, “Tighter focusing with a parabolic mirror,” Opt. Lett. 33(7), 681–683 (2008). [CrossRef] [PubMed]
  13. G. A. Deschamps, “Gaussian beam as a bundle of complex rays,” Electron. Lett. 7(23), 684–685 (1971). [CrossRef]
  14. M. Couture and P.-A. Bélanger, “From Gaussian beam to complex-source-point spherical wave,” Phys. Rev. A 24(1), 355–359 (1981). [CrossRef]
  15. C. J. R. Sheppard and S. Saghafi, “Beam modes beyond the paraxial approximation: A scalar treatment,” Phys. Rev. A 57(4), 2971–2979 (1998). [CrossRef]
  16. C. J. R. Sheppard and S. Saghafi, “Electromagnetic Gaussian beams beyond the paraxial approximation,” J. Opt. Soc. Am. A 16(6), 1381–1386 (1999). [CrossRef]
  17. Z. Ulanowski and I. K. Ludlow, “Scalar field of nonparaxial Gaussian beams,” Opt. Lett. 25(24), 1792–1794 (2000). [CrossRef]
  18. L. W. Davis and G. Patsakos, “TM and TE electromagnetic beams in free space,” Opt. Lett. 6(1), 22–23 (1981). [CrossRef] [PubMed]
  19. C. J. R. Sheppard and S. Saghafi, “Transverse-electric and transverse-magnetic beam modes beyond the paraxial approximation,” Opt. Lett. 24(22), 1543–1545 (1999). [CrossRef]
  20. A. April, “Nonparaxial TM and TE beams in free space,” Opt. Lett. 33(14), 1563–1565 (2008). [CrossRef] [PubMed]
  21. A. April, “Nonparaxial elegant Laguerre-Gaussian beams,” Opt. Lett. 33(12), 1392–1394 (2008). [CrossRef] [PubMed]
  22. G. Arfken, Mathematical Methods for Physicists, 3rd ed., (Oxford, Ohio, Academic Press, Inc., 1985).
  23. C. J. R. Sheppard and K. G. Larkin, “Optimal concentration of electromagnetic radiation,” J. Mod. Opt. 41(7), 1495–1505 (1994). [CrossRef]
  24. N. Bokor and N. Davidson, “Toward a spherical spot distribution with 4? focusing of radially polarized light,” Opt. Lett. 29(17), 1968–1970 (2004). [CrossRef] [PubMed]
  25. N. Bokor and N. Davidson, “4? Focusing with single paraboloid mirror,” Opt. Commun. 281(22), 5499–5503 (2008). [CrossRef]
  26. L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19(3), 1177–1179 (1979). [CrossRef]
  27. C. J. R. Sheppard, “Orthogonal aberration functions for high-aperture optical systems,” J. Opt. Soc. Am. A 21(5), 832–838 (2004). [CrossRef]
  28. R. Kant, “An analytical method of vector diffraction for focusing optical systems with Seidel aberrations II: Astigmatism and coma,” J. Mod. Opt. 42(2), 299–320 (1995). [CrossRef]
  29. C. J. R. Sheppard, “Vector diffraction in paraboloidal mirrors with Seidel aberrations: effects of small object displacements,” Opt. Commun. 138(4-6), 262–264 (1997). [CrossRef]
  30. R. K. Singh, P. Senthilkumaran, and K. Singh, “Effect of primary coma on the focusing of a Laguerre–Gaussian beam by a high numerical aperture system; vectorial diffraction theory,” J. Opt. A, Pure Appl. Opt. 10(9pp), (2008). [CrossRef]
  31. D. P. Biss and T. G. Brown, “Primary aberrations in focused radially polarized vortex beams,” Opt. Express 12(3), 384–393 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited