OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 22232–22244

An in-plane nano-mechanics approach to achieve reversible resonance control of photonic crystal nanocavities

Xiongyeu Chew, Guangya Zhou, Hongbin Yu, Fook Siong Chau, Jie Deng, Yee Chong Loke, and Xiaosong Tang  »View Author Affiliations

Optics Express, Vol. 18, Issue 21, pp. 22232-22244 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1753 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Control of photonic crystal resonances in conjunction with large spectral shifting is critical in achieving reconfigurable photonic crystal devices. We propose a simple approach to achieve nano-mechanical control of photonic crystal resonances within a compact integrated on-chip approach. Three different tip designs utilizing an in-plane nano-mechanical tuning approach are shown to achieve reversible and low-loss resonance control on a one-dimensional photonic crystal nanocavity. The proposed nano-mechanical approach driven by a sub-micron micro-electromechanical system integrated on low loss suspended feeding nanowire waveguide, achieved relatively large resonance spectral shifts of up to 18 nm at a driving voltage of 25 V. Such designs may potentially be used as tunable optical filters or switches.

© 2010 OSA

OCIS Codes
(230.4000) Optical devices : Microstructure fabrication
(230.4685) Optical devices : Optical microelectromechanical devices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: July 26, 2010
Revised Manuscript: August 26, 2010
Manuscript Accepted: August 27, 2010
Published: October 6, 2010

Xiongyeu Chew, Guangya Zhou, Hongbin Yu, Fook Siong Chau, Jie Deng, Yee Chong Loke, and Xiaosong Tang, "An in-plane nano-mechanics approach to achieve reversible resonance control of photonic crystal nanocavities," Opt. Express 18, 22232-22244 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11(22), 2927–2939 (2003). [CrossRef] [PubMed]
  3. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143–145 (1997). [CrossRef]
  4. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005). [CrossRef] [PubMed]
  5. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003). [CrossRef] [PubMed]
  6. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005). [CrossRef]
  7. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef] [PubMed]
  8. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016601–016608 (2002).
  9. A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005). [CrossRef] [PubMed]
  10. A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79(17), 2690–2692 (2001). [CrossRef]
  11. M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, and H. Taniyama, “On-chip all-optical switching and memory by silicon photonic crystal nanocavities,” Adv. Opt. Technol. 2008, 568936 (2008).
  12. K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atature, J. Dreiser, and A. Imamoglu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005). [CrossRef]
  13. K. Hennessy, C. Hogerle, E. Hu, A. Badolato, and A. Imamoglu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89(4), 041118 (2006). [CrossRef]
  14. H. M. H. Chong and R. M. De La Rue, “Tuning of photonic crystal waveguide microcavity by thermooptic effect,” IEEE Photon. Technol. Lett. 16(6), 1528–1530 (2004). [CrossRef]
  15. S. Tomljenovic-Hanic, C. M. de Sterke, and M. J. Steel, “Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration,” Opt. Express 14(25), 12451–12456 (2006). [CrossRef] [PubMed]
  16. M. Schmidt, M. Eich, U. Huebner, and R. Boucher, “Electro-optically tunable photonic crystals,” Appl. Phys. Lett. 87(12), 121110 (2005). [CrossRef]
  17. A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett. 95(15), 153904 (2005). [CrossRef] [PubMed]
  18. F. Intonti, S. Vignolini, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Balet, C. Monat, C. Zinoni, L. H. Li, R. Houdre, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Spectral tuning and near-field imaging of photonic crystal microcavities,” Phys. Rev. B 78(4), 041401 (2008). [CrossRef]
  19. W. C. L. Hopman, K. O. van der Werf, A. J. Hollink, W. Bogaerts, V. Subramaniam, and R. M. de Ridder, “Nano-mechanical tuning and imaging of a photonic crystal micro-cavity resonance,” Opt. Express 14(19), 8745–8752 (2006). [CrossRef] [PubMed]
  20. I. Märki, M. Salt, and H. P. Herzig, “Tuning the resonance of a photonic crystal microcavity with an AFM probe,” Opt. Express 14(7), 2969–2978 (2006). [CrossRef] [PubMed]
  21. Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, and J. Vuckovic, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express 18(9), 8781–8789 (2010). [CrossRef] [PubMed]
  22. Y. Zhang, M. Khan, Y. Huang, J. Ryou, P. Deotare, R. Dupuis, and M. Lončar, “Photonic crystal nanobeam lasers,” Appl. Phys. Lett. 97(5), 051104 (2010). [CrossRef]
  23. B. H. Ahn, J. H. Kang, M. K. Kim, J. H. Song, B. Min, K. S. Kim, and Y. H. Lee, “One-dimensional parabolic-beam photonic crystal laser,” Opt. Express 18(6), 5654–5660 (2010). [CrossRef] [PubMed]
  24. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96(20), 203102 (2010). [CrossRef]
  25. A. R. Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16(16), 12084–12089 (2008). [CrossRef]
  26. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “Coupled photonic crystal nanobeam cavities,” Appl. Phys. Lett. 95(3), 031102–031104 (2009). [CrossRef]
  27. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009). [CrossRef]
  28. I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Loncar, “Programmable photonic crystal nanobeam cavities,” Opt. Express 18(8), 8705–8712 (2010). [CrossRef] [PubMed]
  29. L. Lalouat, B. Cluzel, P. Velha, E. Picard, D. Peyrade, J. P. Hugonin, P. Lalanne, E. Hadji, and F. de Fornel, “Near-field interactions between a subwavelength tip and a small-volume photonic-crystal nanocavity,” Phys. Rev. B 76(4), 041102 (2007). [CrossRef]
  30. M. C. M. Lee, D. Hah, E. K. Lau, H. Toshiyoshi, and M. Wu, “MEMS-actuated photonic crystal switches,” IEEE Photon. Technol. Lett. 18(2), 358–360 (2006). [CrossRef]
  31. E. Bulgan, Y. Kanamori, and K. Hane, “Submicron silicon waveguide optical switch driven by microelectromechanical actuator,” Appl. Phys. Lett. 92(10), 101110 (2008). [CrossRef]
  32. K. Umemori, Y. Kanamori, and K. Hane, “Photonic crystal waveguide switch with a microelectromechanical actuator,” Appl. Phys. Lett. 89(2), 021102 (2006). [CrossRef]
  33. J. Yao, D. Leuenberger, M.-C. M. Lee, and M. C. Wu, “Silicon microtoroidal resonators with integrated MEMS tunable coupler,” IEEE J. Sel. Top. Quantum Electron. 13(2), 202–208 (2007). [CrossRef]
  34. T. Ikeda, K. Takahashi, Y. Kanamori, and K. Hane, “Phase-shifter using submicron silicon waveguide couplers with ultra-small electro-mechanical actuator,” Opt. Express 18(7), 7031–7037 (2010). [CrossRef] [PubMed]
  35. K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express 16(19), 14421–14428 (2008). [CrossRef] [PubMed]
  36. T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(No. 2), 646–647 (2004). [CrossRef]
  37. W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8(1), 148–154 (2002). [CrossRef]
  38. G. Zhou and P. Dowd, “Tilted folded-beam suspension for extending the stable travel range of comb-drive actuators,” J. Micromech. Microeng. 13(2), 178–183 (2003). [CrossRef]
  39. A. Gondarenko and M. Lipson, “Low modal volume dipole-like dielectric slab resonator,” Opt. Express 16(22), 17689–17694 (2008). [CrossRef] [PubMed]
  40. M. Andrews, I. Harris, and G. Turner, “Comparison of squeeze-film theory with measurements on a microstructure,” Sens. Actuators A Phys. 36(1), 79–87 (1993). [CrossRef]
  41. M. Bao, Y. Heng, S. Yuancheng, and W. Yuelin, “Squeeze-film air damping of thick hole-plate,” Sens. Actuators A Phys. 108(1-3), 212–217 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited