OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 22255–22270

Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays

Mohamadreza Najiminaini, Fartash Vasefi, Bozena Kaminska, and Jeffrey J. L. Carson  »View Author Affiliations


Optics Express, Vol. 18, Issue 21, pp. 22255-22270 (2010)
http://dx.doi.org/10.1364/OE.18.022255


View Full Text Article

Enhanced HTML    Acrobat PDF (2448 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we present experimental and numerical analysis on Extraordinary Optical Transmission (EOT) or optical resonance transmission through various nano-hole arrays constructed from an optically thick metal film within the visible and near infra-red spectrum. Nano-hole arrays with different geometrical parameters (hole size, hole shape, and hole periodicity) having their EOT properties in the visible and near-infrared regime were simulated based on Finite Difference Time Domain (FDTD). Large nano-hole arrays with geometric properties similar to the simulated arrays were fabricated using Electron Beam Lithography (EBL). The optical resonance transmission properties (resonance position, transmission efficiency, and spectral bandwidth of resonance peak) of the fabricated nano-hole arrays were characterized. Finally, the experimental and numerical results were analyzed to determine the dependencies and discrepancies between optical resonance transmission properties for various nano-hole arrays.

© 2010 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: August 4, 2010
Revised Manuscript: August 28, 2010
Manuscript Accepted: August 29, 2010
Published: October 6, 2010

Citation
Mohamadreza Najiminaini, Fartash Vasefi, Bozena Kaminska, and Jeffrey J. L. Carson, "Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays," Opt. Express 18, 22255-22270 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-21-22255


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B 16(10), 1743–1748 (1999). [CrossRef]
  2. R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev. , 1–25 (2009).
  3. A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, “Enhanced fluorescence from arrays of nanoholes in a gold film,” J. Am. Chem. Soc. 127(42), 14936–14941 (2005). [CrossRef] [PubMed]
  4. J. R. Lakowicz, M. H. Chowdhury, K. Ray, J. Zhang, Y. Fu, R. Badugu, C. R. Sabanayagam, K. Nowaczyk, H. Szmacinski, K. Aslan, and C. D. Geddes, “Plasmon-controlled fluorescence: A new detection technology,” Proc SPIE 6099, 9–1-9–14 (2009).
  5. A. Lesuffleur, H. Im, N. C. Lindquist, K. S. Lim, and S. H. Oh, “Laser-illuminated nanohole arrays for multiplex plasmonic microarray sensing,” Opt. Express 16(1), 219–224 (2008). [CrossRef] [PubMed]
  6. F. M. Huang, Y. Chen, F. J. Garcia de Abajo, and N. I. Zheludev, “Focusing of light by a Nanohole array,” Appl. Phys. Lett. 90(9), 091119 (2007). [CrossRef]
  7. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett. 92(3), 037401 (2004). [CrossRef] [PubMed]
  8. S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. Lett B 77, 075401 (2008).
  9. F. Przybilla, A. Degiron, J. Y. Laluet, C. Genet, and T. W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A, Pure Appl. Opt. 8(5), 458–463 (2006). [CrossRef]
  10. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  11. K. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B 84(1-2), 11–18 (2006). [CrossRef]
  12. J. Bravo-Abad, L. Martín-Moreno, and F. J. Garcia-Vidal, “Resonant transmission of light through subwavelength holes in thick metal films,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1221–1227 (2006). [CrossRef]
  13. F. Przybilla, A. Degiron, C. Genet, T. W. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal, and L. Martín-Moreno, “Efficiency and finite size effects in enhanced transmission through subwavelength apertures,” Opt. Express 16(13), 9571–9579 (2008). [CrossRef] [PubMed]
  14. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001). [CrossRef]
  15. F. J. Garcia de Abajo, “Light transmission through a single cylindrical hole in a metallic film,” Opt. Express 10(25), 1475–1484 (2002). [PubMed]
  16. R. Gordon and P. Marthandam, “Plasmonic Bragg reflectors for enhanced extraordinary optical transmission through nano-hole arrays in a gold film,” Opt. Express 15(20), 12995–13002 (2007). [CrossRef] [PubMed]
  17. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007). [CrossRef] [PubMed]
  18. N. F. van Hulst, “Plasmonics: Sorting colours,” Nat. Photonics 2(3), 139–140 (2008). [CrossRef]
  19. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  20. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966). [CrossRef]
  21. A. Taflove, and S. C. Hagness, Computational electrodynamics: The Finite-Difference Time-Domain method, 2nd Ed” (Artech House Publishers, Boston, 2000).
  22. E. D. Palik, Handbook of Optical Constants of Solids, Academic Press, New York, (1985).
  23. K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004). [CrossRef]
  24. Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003). [CrossRef]
  25. V. Malyarchuk, F. Hua, N. Mack, V. Velasquez, J. White, R. Nuzzo, and J. Rogers, “High performance plasmonic crystal sensor formed by soft nanoimprint lithography,” Opt. Express 13(15), 5669–5675 (2005). [CrossRef] [PubMed]
  26. A. A. Tseng, “Recent developments in nanofabrication using focused ion beams,” Small 1(10), 924–939 (2005). [CrossRef]
  27. J. Chen, J. Shi, D. Decanini, E. Cambril, Y. Chen, and A. Haghiri-Gosnet, “Gold nanohole arrays for biochemical sensing fabricated by soft UV nanoimprint lithography,” Microelectron. Eng. 86(4-6), 632–635 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited