OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 21 — Oct. 11, 2010
  • pp: 22556–22571

Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate

R. K. Harrison and Adela Ben-Yakar  »View Author Affiliations


Optics Express, Vol. 18, Issue 21, pp. 22556-22571 (2010)
http://dx.doi.org/10.1364/OE.18.022556


View Full Text Article

Enhanced HTML    Acrobat PDF (1168 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present experimental results for the plasmonic laser ablation of silicon with nanoscale features as small as 22 x 66 nm using single near-infrared, femtosecond laser pulses incident on gold nanorods. Near the ablation threshold, these features are photo-imprints of gold nanorod particles positioned on the surface of the silicon and have feature sizes similar to the nanorods. The single rod-shaped ablation pattern matches the enhancement patterns of the Poynting vector magnitude on the surface of silicon, implying that the ablation is a result of the plasmonic enhancement of the incident electromagnetic waves in the near-field of the particles. Interestingly, the ablation pattern is different from the two separated holes at the ends of the nanorod, as would be expected from the electric field – |E|2 enhancement pattern. We measured the plasmonic ablation threshold fluence to be almost two orders of magnitude less than the femtosecond laser ablation threshold of silica, present in the thin native oxide layer on the surface of silicon. This value also agrees with the enhancement of the Poynting vector of a nanorod on silicon as calculated with electromagnetic simulations. We thus conclude that plasmonic ablation with plasmonic nanoparticles depends directly on the polarization and the value of the near-field enhancement of the Poynting vector and not the square of the electric field as previously suggested.

© 2010 OSA

OCIS Codes
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.2250) Ultrafast optics : Femtosecond phenomena
(350.3390) Other areas of optics : Laser materials processing
(160.4236) Materials : Nanomaterials
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Laser Microfabrication

History
Original Manuscript: September 8, 2010
Revised Manuscript: September 30, 2010
Manuscript Accepted: October 1, 2010
Published: October 8, 2010

Citation
R. K. Harrison and Adela Ben-Yakar, "Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate," Opt. Express 18, 22556-22571 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-21-22556


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Tan, C. S. Peng, J. Pakarinen, M. Pessa, V. N. Petryakov, Y. K. Verevkin, J. Zhang, Z. Wang, S. M. Olaizola, T. Berthou, and S. Tisserand, “Ordered nanostructures written directly by laser interference,” Nanotechnology 20(12), 125303 (2009). [CrossRef] [PubMed]
  2. A. Chimmalgi, T. Y. Choi, C. P. Grigoropoulos, and K. Komvopoulos, “Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy,” Appl. Phys. Lett. 82(8), 1146 (2003). [CrossRef]
  3. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003). [CrossRef] [PubMed]
  4. A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004). [CrossRef] [PubMed]
  5. H. J. Münzer, M. Mosbacher, M. Bertsch, O. Dubbers, F. Burmeister, A. Pack, R. Wannemacher, B. U. Runge, D. Bӓ uerle, J. Boneberg, and P. Leiderer, “Optical near field effects in surface nanostructuring and laser cleaning,” Proc. SPIE 4426, 180–183 (2002). [CrossRef]
  6. D. Brodoceanu, L. Landström, and D. Bäuerle, “Laser-induced nanopatterning of silicon with colloidal monolayers,” Appl. Phys., A Mater. Sci. Process. 86(3), 313–314 (2007). [CrossRef]
  7. N. N. Nedyalkov, P. A. Atanasov, and M. Obara, “Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser,” Nanotechnology 18(30), 305703 (2007). [CrossRef]
  8. D. Eversole, B. Luk’yanchuk, and A. Ben-Yakar, “Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres,” Appl. Phys. A: Mater. Sci. Process. 89(2), 283–291 (2007). [CrossRef]
  9. H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006). [CrossRef] [PubMed]
  10. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002). [CrossRef] [PubMed]
  11. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles,” J. Phys. Chem. B 104(45), 10549–10556 (2000). [CrossRef]
  12. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]
  13. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007). [CrossRef] [PubMed]
  14. A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14(15), 6724–6738 (2006). [CrossRef] [PubMed]
  15. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009). [CrossRef] [PubMed]
  16. N. Arnold, “Influence of the substrate, metal overlayer and lattice neighbors on the focusing properties of colloidal microspheres,” Appl. Phys. A: Mater. Sci. Process. 92(4), 1005–1012 (2008). [CrossRef]
  17. T. Sakai, T. Miyanishi, N. Nedyalkov, Y. Nishizawa, and M. Obara, “Nano-dimple processing of silicon surfaces by femtosecond laser irradiation with dielectric particle templates in the Mie scattering domain,” J. Phys. D 42(2), 025502 (2009). [CrossRef]
  18. B. S. Luk’yanchuk, N. Arnold, S. M. Huang, Z. B. Wang, and M. H. Hong, “Three-dimensional effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 77, 209–215 (2003).
  19. A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond laser near-field ablation from gold nanoparticles,” Nat. Phys. 2(1), 44–47 (2006). [CrossRef]
  20. A. Ben-Yakar and R. L. Byer, “Femtosecond laser ablation properties of borosilicate glass,” J. Appl. Phys. 96(9), 5316–5323 (2004). [CrossRef]
  21. H. Urey, “Spot size, depth-of-focus, and diffraction ring intensity formulas for truncated Gaussian beams,” Appl. Opt. 43(3), 620–625 (2004). [CrossRef] [PubMed]
  22. P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, “Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,” Phys. Rev. B 58(5), 2387–2390 (1998). [CrossRef]
  23. S. Besner, “Surface modifications during femtosecond laser ablation in vacuum, air, and water,” Proc. SPIE 5578, 554–558 (2004). [CrossRef]
  24. D. Giguère, G. Olivié, F. Vidal, S. Toetsch, G. Girard, T. Ozaki, J. C. Kieffer, O. Nada, and I. Brunette, “Laser ablation threshold dependence on pulse duration for fused silica and corneal tissues: experiments and modeling,” J. Opt. Soc. Am. A 24(6), 1562–1568 (2007). [CrossRef]
  25. I. Chowdhury, A. Wu, X. Xu, and A. Weiner, “Ultra-fast laser absorption and ablation dynamics in wide-band-gap dielectrics,” Appl. Phys. A: Mater. Sci. Process. 81(8), 1627–1632 (2005). [CrossRef]
  26. Y. Wang, X. Xu, and L. Zheng, “Molecular dynamics simulation of ultrafast laser ablation of fused silica film,” Appl. Phys., A Mater. Sci. Process. 92(4), 849–852 (2008). [CrossRef]
  27. S. E. Kirkwood, M. R. Shadnam, A. Amirfazli, and R. Fedosejevs, “Mechanism for femtosecond laser pulse patterning of self-assembled monolayers on gold-coated substrates,” J. Phys. Conf. Ser. 59, 428–431 (2007). [CrossRef]
  28. X. Ni, C. Wang, L. Yang, J. Li, L. Chai, W. Jia, R. Zhang, and Z. Zhang, “Parametric study on femtosecond laser pulse ablation of Au films,” Appl. Surf. Sci. 253(3), 1616–1619 (2006). [CrossRef]
  29. S. Amoruso, X. Wang, C. Altucci, C. De Lisio, M. Armenante, R. Bruzzese, N. Spinelli, and R. Velotta, “Double-peak distribution of electron and ion emission profile during femtosecond laser ablation of metals,” Appl. Surf. Sci. 186(1-4), 358–363 (2002). [CrossRef]
  30. S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron–phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A: Mater. Sci. Process. 69, S99–S107 (1999).
  31. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988). [CrossRef]
  32. A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” JQSRT 106, 417–436 (2007).
  33. B. T. Draine and J. C. Weingartner, “Radiative torques on interstellar grains. I. Superthermal spin-up,” Astrophys. J. 470, 551–565 (1996). [CrossRef]
  34. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006). [CrossRef] [PubMed]
  35. M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” JQSRT 106, 546–557 (2007).
  36. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).
  37. L. B. Scaffardi and J. O. Tocho, “Size dependence of refractive index of gold nanoparticles,” Nanotechnology 17(5), 1309–1315 (2006). [CrossRef]
  38. E. A. Coronado and G. C. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach,” J. Chem. Phys. 119(7), 3926–3934 (2003). [CrossRef]
  39. M. A. Yurkin, D. de Kanter, and A. G. Hoekstra, “Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles,” J. Nanophotonics 4(1), 041585 (2010). [CrossRef]
  40. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
  41. C. F. Bohren, and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  42. M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” JQSRT 106, 558–589 (2007).
  43. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994). [CrossRef]
  44. J. H. Kim, S. H. Ehrman, G. W. Mulholland, and T. A. Germer, “Polarized light scattering by dielectric and metallic spheres on silicon wafers,” Appl. Opt. 41(25), 5405–5412 (2002). [CrossRef] [PubMed]
  45. P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica A 137(1-2), 209–242 (1986). [CrossRef]
  46. C. Ungureanu, R. G. Rayavarapu, S. Manohar, and T. G. van Leeuwen, “Discrete dipole approximation simulations of gold nanorod optical properties: Choice of input parameters and comparison with experiment,” J. Appl. Phys. 105(10), 102032 (2009). [CrossRef]
  47. S. W. Prescott and P. Mulvaney, “Gold nanorod extinction spectra,” J. Appl. Phys. 99(12), 123504 (2006). [CrossRef]
  48. E. Cappelli, S. Orlando, D. Sciti, M. Montozzi, and L. Pandolfi, “Ceramic surface modifications induced by pulsed laser treatment,” Appl. Surf. Sci. 154-155 (1-4), 682–688 (2000). [CrossRef]
  49. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, “Transient states of matter during short pulse laser ablation,” Phys. Rev. Lett. 81(1), 224–227 (1998). [CrossRef]
  50. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “How long does it take to melt a gold nanorod? A femtosecond pump-probe absorption spectroscopic study,” Chem. Phys. Lett. 315(1-2), 12–18 (1999). [CrossRef]
  51. A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer, and H. A. Stone, “Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses,” J. Phys. D 40(5), 1447–1459 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited