OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 22614–22624

Coupling of terahertz waves to a two-wire waveguide

Hamid Pahlevaninezhad and Thomas E. Darcie  »View Author Affiliations

Optics Express, Vol. 18, Issue 22, pp. 22614-22624 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1237 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We calculate theoretically the coupling of a terahertz wave from a dipole into a two-wire waveguide. The field transmission and reflection are obtained using a Single Mode Matching (SMM) technique at the input port of the two-wire waveguide. The results show more than 70 percent coupling efficiency for the waveguide using 500μm radii wires with 2mm center-to-center separation and the exciting field cross section of 1mm × 1mm. The results also show good agreement with the full-wave numerical simulations using the Finite Element Method (FEM).

© 2010 OSA

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Devices

Original Manuscript: July 21, 2010
Revised Manuscript: September 17, 2010
Manuscript Accepted: October 4, 2010
Published: October 11, 2010

Hamid Pahlevaninezhad and Thomas E. Darcie, "Coupling of terahertz waves to a two-wire waveguide," Opt. Express 18, 22614-22624 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microw. Theory Tech. 39(6), 910–916 (1991). [CrossRef]
  2. C. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000). [CrossRef]
  3. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76(15), 1987–1989 (2000). [CrossRef]
  4. R. Mendis and D. Grischkowsky, “Plastic ribbon thz waveguides,” J. Appl. Phys. 88(7), 4449–4451 (2000). [CrossRef]
  5. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004). [CrossRef] [PubMed]
  6. J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14(1), 279–290 (2006). [CrossRef] [PubMed]
  7. M. K. Mbonye, V. Astley, W. L. Chan, J. A. Deibel, and D. M. Mittleman, “A terahertz dual wire waveguide,” in Lasers and Electro-Optics Conference, Optical Society of America, 2007, paper CThLL1.
  8. M. K. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95(23), 233506 (2009). [CrossRef]
  9. H. Pahlevaninezhad, T. E. Darcie, and B. Heshmat, “Two-wire waveguide for terahertz,” Opt. Express 18(7), 7415–7420 (2010). [CrossRef] [PubMed]
  10. S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70(5), 559‒561 (1997). [CrossRef]
  11. D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Elsevier, Progress in Quantum Electronics 28(1), 1–66 (2004), doi:. [CrossRef]
  12. S. M. Duffy, S. Verghese, A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001). [CrossRef]
  13. S. Matsuura and H. Ito, “Generation of CW terahertz radiation with photomixing,” Top. Appl. Phys. 97, 157–202 (2005). [CrossRef]
  14. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” J. Opt. Soc. Am. 67(12), 1607–1614 (1977). [CrossRef]
  15. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles,” J. Opt. Soc. Am. 67(12), 1615–1619 (1977). [CrossRef]
  16. W. Lukosz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation,” J. Opt. Soc. Am. 69(11), 1495–1502 (1979). [CrossRef]
  17. J. Y. Courtois, J. M. Courty, and J. C. Mertz, “Internal dynamics of multilevel atoms near a vacuum-dielectric interface,” Phys. Rev. A 53(3), 1862–1878 (1996). [CrossRef] [PubMed]
  18. L. Luan, P. R. Sievert, and J. B. Ketterson, “Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space,” J. Phys. 8, 264 (2006), doi:.
  19. P. U. Jepsen and S. R. Keiding, “Radiation patterns from lens-coupled terahertz antennas,” Opt. Lett. 20(8), 807–809 (1995). [CrossRef] [PubMed]
  20. C. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54(6), 490 (1989). [CrossRef]
  21. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13(11), 2424–2436 (1996). [CrossRef]
  22. R. Gordon, “Vectorial method for calculating the Fresnel reflection of surface plasmon polaritons,” Phys. Rev. B 74, 153417 (2006). URL http://link.aps.org/abstract/PRB/v74/e153417 .
  23. R. Gordon, “Light in a subwavelength slit in a metal: Propagation and reflection,” Phys. Rev. B 73, 153405 (2006). URL http://link.aps.org/abstract/PRB/v73/e153405 .
  24. D. M. Pozar, Microwave engineering: 3rd Ed. (John Wiley & Sons, 2005), Chap.4.
  25. A. Yariv, and P. Yeh, Optical waves in crystals: propagation and control of laser radiation (John Wiley & Sons, 1984), Chap.11.
  26. J. D. Jackson, Classical electrodynamics 3rd Ed. (John Wiley & Sons,1999), pp. 390–394.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited