OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 22651–22676

Fuzzy logic-based approach to wavelet denoising of 3D images produced by time-of-flight cameras

Ljubomir Jovanov, Aleksandra Pižurica, and Wilfried Philips  »View Author Affiliations


Optics Express, Vol. 18, Issue 22, pp. 22651-22676 (2010)
http://dx.doi.org/10.1364/OE.18.022651


View Full Text Article

Enhanced HTML    Acrobat PDF (5681 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we present a new denoising method for the depth images of a 3D imaging sensor, based on the time-of-flight principle. We propose novel ways to use luminance-like information produced by a time-of flight camera along with depth images. Firstly, we propose a wavelet-based method for estimating the noise level in depth images, using luminance information. The underlying idea is that luminance carries information about the power of the optical signal reflected from the scene and is hence related to the signal-to-noise ratio for every pixel within the depth image. In this way, we can efficiently solve the difficult problem of estimating the non-stationary noise within the depth images. Secondly, we use luminance information to better restore object boundaries masked with noise in the depth images. Information from luminance images is introduced into the estimation formula through the use of fuzzy membership functions. In particular, we take the correlation between the measured depth and luminance into account, and the fact that edges (object boundaries) present in the depth image are likely to occur in the luminance image as well. The results on real 3D images show a significant improvement over the state-of-the-art in the field.

© 2010 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(100.2980) Image processing : Image enhancement
(100.6890) Image processing : Three-dimensional image processing
(110.0110) Imaging systems : Imaging systems
(110.6880) Imaging systems : Three-dimensional image acquisition
(100.3175) Image processing : Interferometric imaging

ToC Category:
Image Processing

History
Original Manuscript: August 11, 2010
Revised Manuscript: September 27, 2010
Manuscript Accepted: October 2, 2010
Published: October 11, 2010

Citation
Ljubomir Jovanov, Aleksandra Pižurica, and Wilfried Philips, "Fuzzy logic-based approach to wavelet denoising of 3D images produced by time-of-flight cameras," Opt. Express 18, 22651-22676 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-22-22651


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. L. Zitnick, and S. B. Kang, “Stereo for image-based rendering using image over-segmentation,” Int. J. Comput. Vis. 75, 49–65 (2007). [CrossRef]
  2. W. Miled, J.-C. Pesquet, and M. Parent, “A convex optimization approach for depth estimation under illumination variation,” IEEE Trans. Image Process. 18, 813–830 (2009). [CrossRef] [PubMed]
  3. S. K. Nayar, and Y. Nakagawa, “Shape from focus,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 824–831 (1994). [CrossRef]
  4. A. Torralba, and A. Oliva, “Depth estimation from image structure,” IEEE Trans. Pattern Anal. Mach. Intell. 24, 1226–1238 (2002). [CrossRef]
  5. S. Soatto, and P. Perona, ““Reducing ”structure from motion”: A general framework for dynamic vision part 1: Modeling,” IEEE Trans. Pattern Anal. Mach. Intell. 20, 933–942 (1998). [CrossRef]
  6. R. Lange, and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37, 390–397 (2001). [CrossRef]
  7. R. G. J. S. D. V. Nieuwenhove, W. van der Tempel, and M. Kuijk, “Photonic demodulator with sensitivity control,” IEEE Sens. J. 7, 317–318 (2007). [CrossRef]
  8. J. Shah, H. Pien, and J. Gauch, “Recovery of surfaces with discontinuities by fusing shading and range data within a variational framework,” IEEE Trans. Image Process. 5, 1243–1251 (1996). [CrossRef] [PubMed]
  9. S. B. Gokturk, H. Yalcin, and C. Bamji, “A time-of-flight depth sensor - system description, issues and solutions,” in CVPRW ’04: Proceedings of the 2004 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’04) Volume 3, (IEEE Computer Society, 2004), p. 35.
  10. S. Schuon, C. Theobalt, J. Davis, and S. Thrun, “High-quality scanning using time-of-flight depth superresolution,” CVPR Workshop on Time-of-Flight Computer Vision (2008).
  11. M. Frank, M. Plaue, and F. A. Hamprecht, “Denoising of continuous-wave time-of-flight depth images using confidence measures,” Opt. Eng.,  48, 077003 (2009). [CrossRef]
  12. T. Schairer, B. Huhle, P. Jenke, and W. Straßer, “Parallel non-local denoising of depth maps,” in International Workshop on Local and Non-Local Approximation in Image Processing (EUSIPCO Satellite Event) (2008).
  13. L. Jovanov, A. Pi?zurica, and W. Philips, “Wavelet based joint denoising of depth and luminance images,” in 3D TV Conference, Kos Island, Greece (2007).
  14. Lj. Jovanov, N. Petrovi’c, A. Pi?zurica, and W. Philips, “Content adaptive wavelet based method for joint denoising of depth and luminance images,” in SPIE Wavelet Applications in Industrial Processing V, (Boston, Massuchusetts, USA, 2007).
  15. S. Schulte, B. Huysmans, Pi?zurica, E. Kerre, and W. Philips, “A new fuzzy-based wavelet shrinkage image denoising technique,” in Advanced Concepts for Intelligent Vision Systems (Acivs 2006), (Antwerp, Belgium, 2006).
  16. S. De Backer, A. Pi?zurica, B. Huysmans, W. Philips, and P. Scheunders, “Denoising of multicomponent images using wavelet least-squares estimators,” Image Vis. Comput. 26, 1038–1051 (2008). [CrossRef]
  17. A. Benazza-Benyahia, and J. Pesquet, “Building robust wavelet estimators for multicomponent images using Stein’s principle,” IEEE Trans. Image Process. 14, 1814–1830 (2005). [CrossRef] [PubMed]
  18. . “3D TV Production [online],” (2009).
  19. P. Seitz, “Quantum-noise limited distance resolution of optical range imaging techniques,” IEEE Trans. Circuits Syst. I Regul. Pap. 55(8), 2368–2377 (2008). [CrossRef]
  20. I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, 1992).
  21. J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli, “Image denoising using Gaussian scale mixtures in the wavelet domain,” IEEE Trans. Image Process. 12, 1338–1351 (2003). [CrossRef]
  22. S. Chang, B. Yu, and M. Vetterli, “Spatially adaptive wavelet thresholding with context modeling for image denoising,” IEEE Trans. Image Process. 9, 1522–1531 (2000). [CrossRef]
  23. A. Pi?zurica, and W. Philips, “Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising,” IEEE Trans. Image Process. 15, 654–665 (2006). [CrossRef]
  24. S. I. Olsen, “Estimation of noise in images: an evaluation,” CVGIP: Graph. Models Image Process. 55, 319–323 (1993). [CrossRef]
  25. M. Ghazal, A. Amer, and A. Ghrayeb, “A real-time technique for spatiotemporal video noise estimation,” IEEE Trans. Circ. Syst. Video Tech. 17, 1690–1699 (2007). [CrossRef]
  26. A. Amer, and E. Dubois, “Fast and reliable structure-oriented video noise estimation,” IEEE Trans. Circ. Syst. Video Tech. 15, 113–118 (2005). [CrossRef]
  27. V. Zlokolica, A. Pizurica, and W. Philips, “Noise estimation for video processing based on spatio-temporal gradients,” IEEE Signal Process. Lett. 13, 337–340 (2006). [CrossRef]
  28. R. Bracho, and A. Sanderson, “Segmentation of images based on intensity gradient information,” in Proc. IEEE Computer Soc. Conf. on Computer Vision, 341–347(1985).
  29. D. Donoho, I. Johnstone, and I. M. Johnstone, “Ideal spatial adaptation by wavelet shrinkage,” Biometrika 81, 425–455 (1993). [CrossRef]
  30. A. Pizurica, W. Philips, I. Lemahieu, and M. Acheroy, “A joint inter- and intrascale statistical model for bayesian wavelet based image denoising,” IEEE Trans. Image Process. 11, 545–557 (2002). [CrossRef]
  31. “Swissranger sr4000 overview [online],” http://www.mesa-imaging.ch/prodview4k.php (2009).
  32. J. A. Guerrero-Colon, L. Mancera, and J. Portilla, “Image restoration using space-variant gaussian scale mixtures in overcomplete pyramids,” IEEE Trans. Image Process. 17, 27–41 (2008). [CrossRef] [PubMed]
  33. G. J. Iddan, and G. Yahav, “G.: 3d imaging in the studio (and elsewhere,” Proc. SPIE 4298, 48–55 (2001). [CrossRef]
  34. D. De Silva, W. Fernando, and S. Yasakethu, “Object based coding of the depth maps for 3d video coding,” IEEE Trans. Consum. Electron. 55, 1699–1706 (2009). [CrossRef]
  35. L. Zhang, and W. Tam, “Stereoscopic image generation based on depth images for 3d tv,” IEEE Trans. Broadcast 51, 191–199 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited