OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 22702–22714

Sensitivity enhancement in photonic crystal slab biosensors

Mohamed El Beheiry, Victor Liu, Shanhui Fan, and Ofer Levi  »View Author Affiliations

Optics Express, Vol. 18, Issue 22, pp. 22702-22714 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1340 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Refractive index sensitivity of guided resonances in photonic crystal slabs is analyzed. We show that modal properties of guided resonances strongly affect spectral sensitivity and quality factors, resulting in substantial enhancement of refractive index sensitivity. A three-fold spectral sensitivity enhancement is demonstrated for suspended slab designs, in contrast to designs with a slab resting over a substrate. Spectral sensitivity values are additionally shown to be unaffected by quality factor reductions, which are common to fabricated photonic crystal nano-structures. Finally, we determine that proper selection of photonic crystal slab design parameters permits biosensing of a wide range of analytes, including proteins, antigens, and cells. These photonic crystals are compatible with large-area biosensor designs, permitting direct access to externally incident optical beams in a microfluidic device.

© 2010 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: July 19, 2010
Revised Manuscript: September 7, 2010
Manuscript Accepted: September 20, 2010
Published: October 12, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Mohamed El Beheiry, Victor Liu, Shanhui Fan, and Ofer Levi, "Sensitivity enhancement in photonic crystal slab biosensors," Opt. Express 18, 22702-22714 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Shah and R. Weissleder, “Molecular optical imaging: applications leading to the development of present day therapeutics,” NeuroRx 2(2), 215–225 (2005). [CrossRef] [PubMed]
  2. G. Iyer, F. Pinaud, J. Tsay, J. J. Li, L. A. Bentolila, X. Michalet, and S. Weiss, “Peptide coated quantum dots for biological applications,” IEEE Trans. Nanobiosci. 5(4), 231–238 (2006). [CrossRef]
  3. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008). [CrossRef] [PubMed]
  4. W. E. Moerner, “Single-molecule mountains yield nanoscale cell images,” Nat. Methods 3(10), 781–782 (2006). [CrossRef] [PubMed]
  5. X. Michalet, S. Weiss, and M. Jäger, “Single-molecule fluorescence studies of protein folding and conformational dynamics,” Chem. Rev. 106(5), 1785–1813 (2006). [CrossRef] [PubMed]
  6. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008). [CrossRef] [PubMed]
  7. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008). [CrossRef] [PubMed]
  8. P. S. Cremer, “Label-free detection becomes crystal clear,” Nat. Biotechnol. 22(2), 172–173 (2004). [CrossRef] [PubMed]
  9. B. R. Schudel, C. J. Choi, B. T. Cunningham, and P. J. A. Kenis, “Microfluidic chip for combinatorial mixing and screening of assays,” Lab Chip 9(12), 1676–1680 (2009). [CrossRef] [PubMed]
  10. D. R. Shankaran, K. V. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sens. Actuators B Chem. 121(1), 158–177 (2007). [CrossRef]
  11. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003). [CrossRef] [PubMed]
  12. V. Lirtsman, R. Ziblat, M. Golosovsky, D. Davidov, R. Pogreb, V. Sacks-Granek, and J. Rishpon, “Surface-plasmon resonance with infrared excitation: studies of phospholipid membrane growth,” J. Appl. Phys. 98(9), 093506 (2005). [CrossRef]
  13. R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006). [CrossRef] [PubMed]
  14. I. M. White and X. D. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008). [CrossRef] [PubMed]
  15. D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid Nanofluidics 4(1-2), 33–52 (2008). [CrossRef] [PubMed]
  16. S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem. 141(1), 13–19 (2009). [CrossRef]
  17. T. Xu, N. Zhu, M. Y. C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “A pillar-array based two-dimensional photonic crystal microcavity,” Appl. Phys. Lett. 94(24), 241110 (2009). [CrossRef]
  18. H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006). [CrossRef]
  19. A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31(12), 1896–1898 (2006). [CrossRef] [PubMed]
  20. H. Altug and J. Vucković, “Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays,” Opt. Lett. 30(9), 982–984 (2005). [CrossRef] [PubMed]
  21. N. M. Hanumegowda, I. M. White, and X. D. Fan, “Aqueous mercuric ion detection with microsphere optical ring resonator sensors,” Sens. Actuators B Chem. 120(1), 207–212 (2006). [CrossRef]
  22. S. Tomljenovic-Hanic, A. Rahmani, M. J. Steel, and C. M. de Sterke, “Comparison of the sensitivity of air and dielectric modes in photonic crystal slab sensors,” Opt. Express 17(17), 14552–14557 (2009). [CrossRef] [PubMed]
  23. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16(6), 4296–4301 (2008). [CrossRef] [PubMed]
  24. M. R. Lee and P. M. Fauchet, “Nanoscale microcavity sensor for single particle detection,” Opt. Lett. 32(22), 3284–3286 (2007). [CrossRef] [PubMed]
  25. F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007). [CrossRef] [PubMed]
  26. N. A. Mortensen, S. S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid. 4(1-2), 117–127 (2008). [CrossRef]
  27. S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9(20), 2924–2932 (2009). [CrossRef] [PubMed]
  28. S. G. Johnson, S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999). [CrossRef]
  29. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002). [CrossRef]
  30. I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “Sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sens. J. 8(3), 274–280 (2008). [CrossRef]
  31. O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 1–9 (2007).
  32. O. Levi, T. T. Lee, M. M. Lee, S. J. Smith, and J. S. Harris, “Integrated semiconductor optical sensors for cellular and neural imaging,” Appl. Opt. 46(10), 1881–1889 (2007). [CrossRef] [PubMed]
  33. M. Huang, A. A. Yanik, T.-Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17(26), 24224–24233 (2009). [CrossRef]
  34. L. Shi, P. Pottier, Y. A. Peter, and M. Skorobogatiy, “Guided-mode resonance photonic crystal slab sensors based on bead monolayer geometry,” Opt. Express 16(22), 17962–17971 (2008). [CrossRef] [PubMed]
  35. L. Shi, P. Pottier, M. Skorobogatiy, and Y.-A. Peter, “Tunable structures comprising two photonic crystal slabs--optical study in view of multi-analyte enhanced detection,” Opt. Express 17(13), 10623–10632 (2009). [CrossRef] [PubMed]
  36. S. H. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002). [CrossRef]
  37. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B 60(4), 2610–2618 (1999). [CrossRef]
  38. V. Liu, M. Povinelli, and S. Fan, “Resonance-enhanced optical forces between coupled photonic crystal slabs,” Opt. Express 17(24), 21897–21909 (2009). [CrossRef] [PubMed]
  39. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010). [CrossRef]
  40. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Second ed. (Princeton University Press, Princeton, NJ, 2008).
  41. O. Kilic, S. Kim, W. Suh, Y. A. Peter, A. S. Sudbø, M. F. Yanik, S. H. Fan, and O. Solgaard, “Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders,” Opt. Lett. 29(23), 2782–2784 (2004). [CrossRef] [PubMed]
  42. Y. Nazirizadeh, U. Lemmer, and M. Gerken, “Experimental quality factor determination of guided-mode resonances in photonic crystal slabs,” Appl. Phys. Lett. 93(26), 261110 (2008). [CrossRef]
  43. I. D. Block, M. Pineda, C. J. Choi, and B. T. Cunningham, “High Sensitivity Plastic-Substrate Photonic Crystal Biosensor,” IEEE Sens. J. 8(9), 1546–1547 (2008). [CrossRef]
  44. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 16–24 (1999). [CrossRef]
  45. J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032–1041 (2009). [CrossRef]
  46. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999). [CrossRef]
  47. Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J. 91(5), 1925–1940 (2006). [CrossRef] [PubMed]
  48. L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, “A label-free photonic crystal biosensor imaging method for detection of cancer cell cytotoxicity and proliferation,” Apoptosis 12(6), 1061–1068 (2007). [CrossRef] [PubMed]
  49. M. F. Pineda, L. L. Y. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid Specific and Label-Free Detection of Porcine Rotavirus Using Photonic Crystal Biosensors,” IEEE Sens. J. 9(4), 470–477 (2009). [CrossRef]
  50. W. Zhang, N. Ganesh, P. C. Mathias, and B. T. Cunningham, “Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures,” Small 4(12), 2199–2203 (2008). [CrossRef] [PubMed]
  51. E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J. Smith, W. E. Moerner, and J. S. Harris., “Monolithically integrated semiconductor fluorescence sensor for microfluidic applications,” Sens. Actuators B Chem. 105(2), 393–399 (2005). [CrossRef]
  52. O. Andersson, A. Larsson, T. Ekblad, and B. Liedberg, “Gradient hydrogel matrix for microarray and biosensor applications: an imaging SPR study,” Biomacromolecules 10(1), 142–148 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited