OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 22762–22771

Broadband time-domain absorption spectroscopy with a ns-pulse supercontinuum source

Yaroslav Sych, Rainer Engelbrecht, Bernhard Schmauss, Dimitrii Kozlov, Thomas Seeger, and Alfred Leipertz  »View Author Affiliations


Optics Express, Vol. 18, Issue 22, pp. 22762-22771 (2010)
http://dx.doi.org/10.1364/OE.18.022762


View Full Text Article

Enhanced HTML    Acrobat PDF (1133 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A Q-switched laser based system for broadband absorption spectroscopy in the range of 1390-1740 nm (7200-5750 cm−1) has been developed and tested. In the spectrometer the 1064 nm light of a 25 kHz repetition-rate micro-chip Nd:YAG laser is directed into a photonic crystal fiber to produce a short (about 2 ns) pulse of radiation in a wide spectral range. This radiation is passed through a 25 km long dispersive single-mode fiber in order to spread the respective wavelengths over a time interval of about 140 ns at the fiber output. This fast swept-wavelength light source allows to record gas absorption spectra by temporally-resolved detection of the transmitted light power. The realized spectral resolution is about 2 cm−1. Examples of spectra recorded in a cell with CO2:CH4:N2 gas mixtures are presented. An algorithm employed for the evaluation of molar concentrations of different species from the spectra with non-overlapping absorption bands of mixture components is described. The uncertainties of the concentration values retrieved at different acquisition times due to the required averaging are evaluated. As an example, spectra with a signal-to-noise ratio large enough to provide species concentrations with a relative error of 5% can be obtained in real time at a millisecond time scale. Potentials and limitations of this technique are discussed.

© 2010 OSA

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(300.1030) Spectroscopy : Absorption
(300.6360) Spectroscopy : Spectroscopy, laser

ToC Category:
Spectroscopy

History
Original Manuscript: July 19, 2010
Revised Manuscript: October 1, 2010
Manuscript Accepted: October 6, 2010
Published: October 13, 2010

Citation
Yaroslav Sych, Rainer Engelbrecht, Bernhard Schmauss, Dimitrii Kozlov, Thomas Seeger, and Alfred Leipertz, "Broadband time-domain absorption spectroscopy with a ns-pulse supercontinuum source," Opt. Express 18, 22762-22771 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-22-22762


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. G. Allen, E. R. Furlong, and R. K. Hanson, “Tunable Diode Laser Sensing and Combustion Control,” in Applied Combustion Diagnostics, K. Kohse-Höinghaus, J. B. Jeffries, eds., (Taylor and Francis, New York 2002). pg. 479.
  2. K. Wunderle, S. Wagner, I. Pasti, R. Pieruschka, U. Rascher, U. Schurr, and V. Ebert, “Distributed feedback diode laser spectrometer at 2.7 µm for sensitive, spatially resolved H2O vapor detection,” Appl. Opt. 48(4), B172–B182 (2009). [CrossRef] [PubMed]
  3. W. Gurlit, R. Zimmermann, C. Giesemann, T. Fernholz, V. Ebert, J. Wolfrum, U. Platt, and J. P. Burrows, “Lightweight diode laser spectrometer CHILD (Compact High-altitude iN-situ Laser Diode) for balloonborne measurements of water vapor and methane,” Appl. Opt. 44(1), 91–102 (2005). [PubMed]
  4. W. B. Whitten, “Time-of-flight optical spectrometry with fiber optic waveguides,” Anal. Chem. 54(7), 1026–1028 (1982). [CrossRef]
  5. P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, “Time-domain optical sensing,” Electron. Lett. 35(19), 1661–1662 (1999). [CrossRef]
  6. S. T. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B 75(6-7), 799–802 (2002). [CrossRef]
  7. J. W. Walewski and S. T. Sanders, “High-resolution wavelength-agile laser source based on pulsed super-continua,” Appl. Phys. B 79(4), 415–418 (2004). [CrossRef]
  8. J. Chou, Y. Han, and B. Jalali, “Time-Wavelength Spectroscopy for Chemical Sensing,” IEEE Photon. Technol. Lett. 16(4), 1140–1142 (2004). [CrossRef]
  9. J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express 15(18), 11385–11395 (2007). [CrossRef] [PubMed]
  10. R. S. Watt, C. F. Kaminski, and J. Hult, “Generation of supercontinuum radiation in conventional single-mode fiber and its application to broadband absorption spectroscopy,” Appl. Phys. B 90(1), 47–53 (2008). [CrossRef]
  11. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004). [CrossRef] [PubMed]
  12. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]
  13. J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett. 92(11), 111102 (2008). [CrossRef]
  14. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008). [CrossRef]
  15. C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008). [CrossRef]
  16. L. S. Rothman, D. Jacquemart, A. Barbe, D. Chrisbenner, M. Birk, L. Brown, M. Carleer, C. Chackerianjr, K. Chance, and L. Coudert, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 96(2), 139–204 (2005). [CrossRef]
  17. J. Hult, R. S. Watt, and C. F. Kaminski, “Dispersion measurement in optical fibers using supercontinuum pulses,” J. Lightwave Technol. 25(3), 820–824 (2007). [CrossRef]
  18. C. Frankenberg, T. Warneke, A. Butz, I. Aben, F. Hase, P. Spietz, and L. R. Brown, “Pressure broadening in the 2ν3 band of methane and its implication on atmospheric retrievals,” Atmos. Chem. Phys. 8(17), 5061–5075 (2008). [CrossRef]
  19. J.-M. Hartmann, C. Boulet, and D. Robert, Collisional effects on molecular spectra laboratory experiments and models, consequences for applications (Amsterdam: Elsevier; 2008).
  20. H. Tran, J.-M. Hartmann, G. Toon, L. R. Brown, C. Frankenberg, T. Warneke, P. Spietz, and F. Hase, “The 2ν3 band of CH4 revisited with line mixing: Consequences for spectroscopy and atmospheric retrievals at 1.67 μm,” J. Quant. Spectrosc. Radiat. Transf. 111(10), 1344–1356 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited