OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 22781–22788

Performance of planar-waveguide external cavity laser for precision measurements

Kenji Numata, Jordan Camp, Michael A. Krainak, and Lew Stolpner  »View Author Affiliations

Optics Express, Vol. 18, Issue 22, pp. 22781-22788 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1069 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A 1542-nm planar-waveguide external cavity laser (PW-ECL) is shown to have a sufficiently low level of noise to be suitable for precision measurement applications. Its frequency noise and intensity noise was comparable or better than the non-planar ring oscillator (NPRO) and fiber laser between 0.1 mHz to 100 kHz. Controllability of the PW-ECL was demonstrated by stabilizing its frequency to acetylene (13C2H2) at 10−13 level of Allan deviation. The PW-ECL also has the advantage of the compactness of a standard butterfly package, low cost, and a simple design consisting of a semiconductor gain media coupled to a planar-waveguide Bragg reflector.

© 2010 OSA

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(300.6390) Spectroscopy : Spectroscopy, molecular
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 2, 2010
Revised Manuscript: September 30, 2010
Manuscript Accepted: October 2, 2010
Published: October 13, 2010

Kenji Numata, Jordan Camp, Michael A. Krainak, and Lew Stolpner, "Performance of planar-waveguide external cavity laser for precision measurements," Opt. Express 18, 22781-22788 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. J. Kane and R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10(2), 65–67 (1985). [CrossRef] [PubMed]
  2. B. C. Barish and R. Weiss, “LIGO and the detection of gravitational waves,” Phys. Today 52(10), 44 (1999). [CrossRef]
  3. L. Bartelt-Berger, F. Heine, U. Hildebrand, D. Lange, S. Seel, T. Schwinder, and B. Smutny, “Space qualified ultra stable laser source,” Lasers and Electro-Optics, 2001. CLEO '01. Technical Digest., pp.580–581, (2001).
  4. K. Liu and M. G. Littman, “Novel geometry for single-mode scanning of tunable lasers,” Opt. Lett. 6(3), 117–118 (1981). [CrossRef] [PubMed]
  5. C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72(12), 4477 (2001). [CrossRef]
  6. A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10−15,” Opt. Lett. 32(6), 641–643 (2007). [CrossRef] [PubMed]
  7. J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77(5), 053809 (2008). [CrossRef]
  8. L. Dong, W. H. Loh, J. E. Caplen, J. D. Minelly, K. Hsu, and L. Reekie, “Efficient single-frequency fiber lasers with novel photosensitive Er/Yb optical fibers,” Opt. Lett. 22(10), 694–696 (1997). [CrossRef] [PubMed]
  9. C. P. Spiegelberg, “Compact 100 mW fiber laser with 2 kHz linewidth,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper PD45.
  10. Redfern Integrated Optics Inc, http://www.rio-inc.com/ , (California, USA).
  11. M. Alalusi, P. Brasil, S. Lee, P. Mols, L. Stolpner, A. Mehnert, and S. Li, “Low noise planar external cavity laser for interferometric fiber optic sensors,” Proc. SPIE 7316, 73160–X (2009). [CrossRef]
  12. M. Tröbs, L. d'Arcio, G. Heinzel, and K. Danzmann, “Frequency stabilization and actuator characterization of an ytterbium-doped distributed-feedback fiber laser for LISA,” J. Opt. Soc. Am. B 26(5), 1137 (2009). [CrossRef]
  13. J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39(9), 680 (1981). [CrossRef]
  14. P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542nm: acetylene stabilized DFB laser,” Opt. Express 13(23), 9196–9201 (2005). [CrossRef] [PubMed]
  15. D. Shaddock, B. Ware, P. G. Halverson, R. E. Spero, and B. Klipstein, “Overview of the LISA phasemeter,” AIP Conf. Proc. 873, 654 (2006). [CrossRef]
  16. C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 μm region,” Appl. Phys. B 80(8), 977–983 (2005). [CrossRef]
  17. V. Leonhardt, J. H. Chow, and J. B. Camp, “Laser frequency stabilization to molecular resonances for TPF-C, LISA, and MAXIM,” Proc. SPIE 6265, 62652M (2006). [CrossRef]
  18. R. E. Bartolo, C. K. Kirkendall, V. Kupershmidt, and S. Siala, “Achieving narrow linewidth, low phase noise external cavity semiconductor lasers through the reduction of 1/f noise,” Proc. of SPIE 61333, 6133OI, (2006).
  19. E. Rønnekleiv, “Frequency and intensity noise of single frequency fiber Bragg grating lasers,” Opt. Fiber Technol. 7(3), 206–235 (2001). [CrossRef]
  20. G. A. Cranch, M. A. Englund, and C. K. Kirkendall, “Intensity noise characteristics of Erbium-doped distributed-feedback fiber lasers,” IEEE J. Quantum Electron. 39(12), 1579–1586 (2003). [CrossRef]
  21. S. Huang, Y. Feng, J. Dong, A. Shirakawa, M. Musha, and K. Ueda, “1083 nm single frequency ytterbium doped fiber laser,” Laser Phys. Lett. 2(10), 498–501 (2005). [CrossRef]
  22. M. Tröbs, P. Weßels, and C. Fallnich, “Power- and frequency-noise characteristics of an Yb-doped fiber amplifier and actuators for stabilization,” Opt. Express 13(6), 2224–2235 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited