OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 22867–22879

Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays

D.-X. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delâge, J. Lapointe, P. Cheben, J. H. Schmid, E. Post, Sonia Messaoudène, and Jean-Marc Fédéli  »View Author Affiliations


Optics Express, Vol. 18, Issue 22, pp. 22867-22879 (2010)
http://dx.doi.org/10.1364/OE.18.022867


View Full Text Article

Enhanced HTML    Acrobat PDF (1301 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A comprehensive investigation of real-time temperature-induced resonance shift cancellation for silicon wire based biosensor arrays is reported for the first time. A reference resonator, protected by either a SU8 or SiO2 cladding layer, is used to track temperature changes. The temperature dependence of resonators in aqueous solutions, pertinent to biosensing applications, is measured under steady-state conditions and the operating parameters influencing these properties are discussed. Real-time measurements show that the reference resonator resonances reflect the temperature changes without noticeable time delay, enabling effective cancellation of temperature-induced shifts. Binding between complementary IgG protein pairs is monitored over 4 orders of magnitude dynamic range down to a concentration of 20 pM, demonstrating a resolvable mass of 40 attograms. Reactions are measured over time periods as long as 3 hours with high stability, showing a scatter corresponding to a fluid refractive index fluctuation of ± 4 × 10−6 in the baseline data. Sensor arrays with a SU8 protective cladding are easy to fabricate, while oxide cladding is found to provide superior stability for measurements involving long time scales.

© 2010 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors
(220.0220) Optical design and fabrication : Optical design and fabrication
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

History
Original Manuscript: August 11, 2010
Revised Manuscript: October 6, 2010
Manuscript Accepted: October 6, 2010
Published: October 13, 2010

Citation
D.-X. Xu, M. Vachon, A. Densmore, R. Ma, S. Janz, A. Delâge, J. Lapointe, P. Cheben, J. H. Schmid, E. Post, Sonia Messaoudène, and Jean-Marc Fédéli, "Real-time cancellation of temperature induced resonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays," Opt. Express 18, 22867-22879 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-22-22867


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Tiefenthaler and W. Lukosz, “Sensitivity of grating couplers as integrated-optical chemical sensors,” J. Opt. Soc. Am. B 6(2), 209–220 (1989). [CrossRef]
  2. B. Luff, J. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, and N. Fabricius, ““Integrated optical Mach-Zehnder biosensor,” Lightwave Technology,” Journalism 16, 583–592 (1998). [CrossRef]
  3. R. Heideman, R. Kooyman, and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sens. Actuators B Chem. 10(3), 209–217 (1993). [CrossRef]
  4. F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, and L. Lechuga, “Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications,” Sens. Actuators B Chem. 92(1-2), 151–158 (2003). [CrossRef]
  5. J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999). [CrossRef]
  6. R. Karlsson, “SPR for molecular interaction analysis: a review of emerging application areas,” J. Mol. Recognit. 17(3), 151–161 (2004). [CrossRef] [PubMed]
  7. A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006). [CrossRef]
  8. D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16(19), 15137–15148 (2008). [CrossRef] [PubMed]
  9. A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem. 81(22), 9499–9506 (2009). [CrossRef] [PubMed]
  10. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007). [CrossRef] [PubMed]
  11. A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12(1), 148–155 (2006). [CrossRef]
  12. A. Densmore, M. Vachon, D.-X. Xu, S. Janz, R. Ma, Y.-H. Li, G. Lopinski, A. Delâge, J. Lapointe, C. C. Luebbert, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection,” Opt. Lett. 34(23), 3598–3600 (2009). [CrossRef] [PubMed]
  13. K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009). [CrossRef]
  14. M. Iqbal, M. Gleeson, B. Spaugh, F. Tybor, W. Gunn, M. Hochberg, T. Baehr-Jones, R. Bailey, and L. Gunn, “Label-Free Biosensor Arrays Based on Silicon Ring Resonators and High-Speed Optical Scanning Instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010). [CrossRef]
  15. D.-X. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach,” Opt. Lett. 35(16), 2771–2773 (2010). [CrossRef] [PubMed]
  16. J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D.-X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express 17(20), 18371–18380 (2009). [CrossRef] [PubMed]
  17. N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J Biophotonics 2(4), 212–226 (2009). [CrossRef] [PubMed]
  18. S. Chu, B. Little, W. Pan, T. Kaneko, S. Sato, and Y. Kokubun, “An eight-channel add-drop filter using vertically coupled microring resonators over a cross grid,” IEEE Photon. Technol. Lett. 11(6), 691–693 (1999). [CrossRef]
  19. J. Lee, D. Kim, H. Ahn, S. Park, and G. Kim, “Temperature dependence of silicon nanophotonic ring resonator with a polymeric overlayer,” J. Lightwave Technol. 25(8), 2236–2243 (2007). [CrossRef]
  20. W. Ye, J. Michel, and L. Kimerling, “Athermal high-index-contrast waveguide design,” IEEE Photon. Technol. Lett. 20(11), 885–887 (2008). [CrossRef]
  21. K. B. Gylfason, C. F. Carlborg, A. Kaźmierczak, F. Dortu, H. Sohlström, L. Vivien, C. A. Barrios, W. van der Wijngaart, and G. Stemme, “On-chip temperature compensation in an integrated slot-waveguide ring resonator refractive index sensor array,” Opt. Express 18(4), 3226–3237 (2010). [CrossRef] [PubMed]
  22. M.-S. Kwon and W. H. Steier, “Microring-resonator-based sensor measuring both the concentration and temperature of a solution,” Opt. Express 16(13), 9372–9377 (2008). [CrossRef] [PubMed]
  23. H.-S. Lee, G.-D. Kim, and S.-S. Lee, “Temperature Compensated Refractometric Biosensor Exploiting Ring Resonators,” IEEE Photon. Technol. Lett. 21(16), 1136–1138 (2009). [CrossRef]
  24. E. Palik, Handbook of optical constants of solids II (Academic press, 1991).
  25. G. Cocorullo, F. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338 (1999). [CrossRef]
  26. H. El-Kashef, “The necessary requirements imposed on polar dielectric laser dye solvents–II,” Physica B 311(3-4), 376–379 (2002). [CrossRef]
  27. J. Stepánek, H. Vaisocherová, and M. Piliarik, eds., Molecular Interactions in SPR Sensors (Springer, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited