OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 22886–22905

Straightforward FRAP for quantitative diffusion measurements with a laser scanning microscope

Hendrik Deschout, Joel Hagman, Sophia Fransson, Jenny Jonasson, Mats Rudemo, Niklas Lorén, and Kevin Braeckmans  »View Author Affiliations

Optics Express, Vol. 18, Issue 22, pp. 22886-22905 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1503 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Confocal or multi-photon laser scanning microscopes are convenient tools to perform FRAP diffusion measurements. Despite its popularity, accurate FRAP remains often challenging since current methods are either limited to relatively large bleach regions or can be complicated for non-specialists. In order to bring reliable quantitative FRAP measurements to the broad community of laser scanning microscopy users, here we have revised FRAP theory and present a new pixel based FRAP method relying on the photo bleaching of rectangular regions of any size and aspect ratio. The method allows for fast and straightforward quantitative diffusion measurements due to a closed–form expression for the recovery process utilizing all available spatial and temporal data. After a detailed validation, its versatility is demonstrated by diffusion studies in heterogeneous biopolymer mixtures.

© 2010 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.1790) Medical optics and biotechnology : Confocal microscopy
(180.0180) Microscopy : Microscopy
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:

Original Manuscript: June 21, 2010
Revised Manuscript: August 20, 2010
Manuscript Accepted: October 7, 2010
Published: October 14, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Hendrik Deschout, Joel Hagman, Sophia Fransson, Jenny Jonasson, Mats Rudemo, Niklas Lorén, and Kevin Braeckmans, "Straightforward FRAP for quantitative diffusion measurements with a laser scanning microscope," Opt. Express 18, 22886-22905 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Edidin, “Translational diffusion of membrane proteins,” in The Structure of Biological Membranes, P. Yeagle, ed., (CRC Press, Boca Raton, 1992), pp. 539–572.
  2. A. Ishihara and K. Jacobson, “A closer look at how membrane proteins move,” Biophys. J. 65(5), 1754–1755 (1993). [CrossRef] [PubMed]
  3. F. Umenishi, J. M. Verbavatz, and A. S. Verkman, “cAMP regulated membrane diffusion of a green fluorescent protein-aquaporin 2 chimera,” Biophys. J. 78(2), 1024–1035 (2000). [CrossRef] [PubMed]
  4. F. Alvarez-Manceñido, K. Braeckmans, S. C. De Smedt, J. Demeester, M. Landin, and R. Martínez-Pacheco, “Characterization of diffusion of macromolecules in konjac glucomannan solutions and gels by fluorescence recovery after photobleaching technique,” Int. J. Pharm. 316(1-2), 37–46 (2006). [CrossRef] [PubMed]
  5. M. D. Burke, J. O. Park, M. Srinivasarao, and S. A. Khan, “Diffusion of macromolecules in polymer solutions and gels: A laser scanning confocal microscopy study,” Macromolecules 33(20), 7500–7507 (2000). [CrossRef]
  6. R. Censi, T. Vermonden, M. J. van Steenbergen, H. Deschout, K. Braeckmans, S. C. De Smedt, C. F. van Nostrum, P. di Martino, and W. E. Hennink, “Photopolymerized thermosensitive hydrogels for tailorable diffusion-controlled protein delivery,” J. Control. Release 140(3), 230–236 (2009). [CrossRef] [PubMed]
  7. S. C. De Smedt, T. K. L. Meyvis, J. Demeester, P. VanOostveldt, J. C. G. Blonk, and W. E. Hennink, “Diffusion of macromolecules in dextran methacrylate solutions and gels as studied by confocal scanning laser microscopy,” Macromolecules 30(17), 4863–4870 (1997). [CrossRef]
  8. F. van de Manakker, K. Braeckmans, N. Morabit, S. C. De Smedt, C. F. van Nostrum, and W. E. Hennink, “Protein-Release Behavior of Self-Assembled PEG-beta-Cyclodextrin/PEG-Cholesterol Hydrogels,” Adv. Funct. Mater. 19(18), 2992–3001 (2009). [CrossRef]
  9. S. R. Van Tomme, B. G. De Geest, K. Braeckmans, S. C. De Smedt, F. Siepmann, J. Siepmann, C. F. van Nostrum, and W. E. Hennink, “Mobility of model proteins in hydrogels composed of oppositely charged dextran microspheres studied by protein release and fluorescence recovery after photobleaching,” J. Control. Release 110(1), 67–78 (2005). [CrossRef] [PubMed]
  10. J. Braga, J. M. P. Desterro, and M. Carmo-Fonseca, “Intracellular macromolecular mobility measured by fluorescence recovery after photobleaching with confocal laser scanning microscopes,” Mol. Biol. Cell 15(10), 4749–4760 (2004). [CrossRef] [PubMed]
  11. O. Seksek, J. Biwersi, and A. S. Verkman, “Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus,” J. Cell Biol. 138(1), 131–142 (1997). [CrossRef] [PubMed]
  12. A. S. Verkman, “Diffusion in cells measured by fluorescence recovery after photobleaching,” Methods Enzymol. 360, 635–648 (2003). [CrossRef] [PubMed]
  13. D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, “Mobility measurement by analysis of fluorescence photobleaching recovery kinetics,” Biophys. J. 16(9), 1055–1069 (1976). [CrossRef] [PubMed]
  14. K. Braeckmans, B. G. Stubbe, K. Remaut, J. Demeester, and S. C. De Smedt, “Anomalous photobleaching in fluorescence recovery after photobleaching measurements due to excitation saturation--a case study for fluorescein,” J. Biomed. Opt. 11(4), 044013 (2006). [CrossRef] [PubMed]
  15. K. Braeckmans, K. Remaut, R. E. Vandenbroucke, B. Lucas, S. C. De Smedt, and J. Demeester, “Line FRAP with the confocal laser scanning microscope for diffusion measurements in small regions of 3-D samples,” Biophys. J. 92(6), 2172–2183 (2007). [CrossRef] [PubMed]
  16. D. Mazza, K. Braeckmans, F. Cella, I. Testa, D. Vercauteren, J. Demeester, S. S. De Smedt, and A. Diaspro, “A new FRAP/FRAPa method for three-dimensional diffusion measurements based on multiphoton excitation microscopy,” Biophys. J. 95(7), 3457–3469 (2008). [CrossRef] [PubMed]
  17. K. Braeckmans, L. Peeters, N. N. Sanders, S. C. De Smedt, and J. Demeester, “Three-dimensional fluorescence recovery after photobleaching with the confocal scanning laser microscope,” Biophys. J. 85(4), 2240–2252 (2003). [CrossRef] [PubMed]
  18. D. A. Berk, F. Yuan, M. Leunig, and R. K. Jain, “Fluorescence photobleaching with spatial Fourier analysis: measurement of diffusion in light-scattering media,” Biophys. J. 65(6), 2428–2436 (1993). [CrossRef] [PubMed]
  19. P. Jönsson, M. P. Jonsson, J. O. Tegenfeldt, and F. Höök, “A method improving the accuracy of fluorescence recovery after photobleaching analysis,” Biophys. J. 95(11), 5334–5348 (2008). [CrossRef] [PubMed]
  20. T. T. Tsay and K. A. Jacobson, “Spatial Fourier analysis of video photobleaching measurements. Principles and optimization,” Biophys. J. 60(2), 360–368 (1991). [CrossRef] [PubMed]
  21. J. K. Jonasson, N. Lorén, P. Olofsson, M. Nydén, and M. Rudemo, “A pixel-based likelihood framework for analysis of fluorescence recovery after photobleaching data,” J. Microsc. 232(2), 260–269 (2008). [CrossRef] [PubMed]
  22. J. K. Jonasson, J. Hagman, N. Lorén, D. Bernin, M. Nydén, and M. Rudemo, “Pixel-based analysis of FRAP data with a general initial bleaching profile,” J. Microsc. 239(2), 142–153 (2010). [PubMed]
  23. A. Tannert, S. Tannert, S. Burgold, and M. Schaefer, “Convolution-based one and two component FRAP analysis: theory and application,” Eur. Biophys. J. 38(5), 649–661 (2009). [CrossRef] [PubMed]
  24. P. Wedekind, U. Kubitscheck, and R. Peters, “Scanning microphotolysis: a new photobleaching technique based on fast intensity modulation of a scanned laser beam and confocal imaging,” J. Microsc. 176(Pt 1), 23–33 (1994). [CrossRef] [PubMed]
  25. P. Wedekind, U. Kubitscheck, O. Heinrich, and R. Peters, “Line-scanning microphotolysis for diffraction-limited measurements of lateral diffusion,” Biophys. J. 71(3), 1621–1632 (1996). [CrossRef] [PubMed]
  26. E. B. Brown, E. S. Wu, W. Zipfel, and W. W. Webb, “Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery,” Biophys. J. 77(5), 2837–2849 (1999). [CrossRef] [PubMed]
  27. J. Crank, The Mathematics of Diffusion, (Clarendon Press, Oxford, 1975).
  28. J. C. G. Blonk, A. Don, H. Vanaalst, and J. J. Birmingham, “Fluorescence Photobleaching Recovery in the Confocal Scanning Light-Microscope,” J. Microsc. 169, 363–374 (1993). [CrossRef]
  29. Y. Pawitan, In All Likelihood, (Clarendon Press, Oxford, 2001).
  30. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, “Confidence Limits on Estimated Model Parameters,” in Numerical Recipes in C, (Cambridge University Press, Cambridge, 1992).
  31. M. Kang, C. A. Day, K. Drake, A. K. Kenworthy, and E. DiBenedetto, “A generalization of theory for two-dimensional fluorescence recovery after photobleaching applicable to confocal laser scanning microscopes,” Biophys. J. 97(5), 1501–1511 (2009). [CrossRef] [PubMed]
  32. S. Fransson, N. Lorén, A. Altskär, and A. M. Hermansson, “Effect of confinement and kinetics on the morphology of phase separating gelatin-maltodextrin droplets,” Biomacromolecules 10(6), 1446–1453 (2009). [CrossRef] [PubMed]
  33. N. Lorén, A. Altskar, and A. M. Hermansson, “Structure evolution during gelation at later stages of spinodal decomposition in gelatin/maltodextrin mixtures,” Macromolecules 34(23), 8117–8128 (2001). [CrossRef]
  34. N. Lorén and A. M. Hermansson, “Phase separation and gel formation in kinetically trapped gelatin/maltodextrin gels,” Int. J. Biol. Macromol. 27(4), 249–262 (2000). [CrossRef] [PubMed]
  35. N. Loren, and A. M. Hermansson, “Structure evolution during phase separation and gelation of biopolymer mixtures,” in Food Colloids - Biopolymers and Materials, Dickinson E. and Van Vliet T., eds., (The Royal Society of Chemistry, Cambridge, 2003), pp. 298–308.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited