OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 22958–22963

Experimental study on stimulated Rayleigh scattering in optical fibers

Tao Zhu, Xiaoyi Bao, Liang Chen, Hao Liang, and Yongkang Dong  »View Author Affiliations


Optics Express, Vol. 18, Issue 22, pp. 22958-22963 (2010)
http://dx.doi.org/10.1364/OE.18.022958


View Full Text Article

Enhanced HTML    Acrobat PDF (890 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The linewidth, the threshold, and frequency shift of the stimulated Rayleigh scattering (STRS) in single mode fiber (SMF-28e), large effective area fiber (LEAF) and polarization maintaining fiber (PMF) have been studied using heterodyne detection to separate the Brillouin scattering with a fiber laser for the first time to the best of our knowledge. Experimental results show that the linewidth of STRS and spontaneous Rayleigh scattering are ~9 kHz, ~10 kHz, and ~11 kHz, and ~25 kHz, ~30 kHz, and ~27 kHz for SMF-28e, LEAF and PMF, respectively. The threshold power for STRS for 2km SMF-28e, 7km LEAF, and 100m PMF are 11dBm, 4.5dBm and 16.5dBm, respectively. The measured Rayleigh gain coefficient is a 2 × 10−13 m/W for SMF-28e. Also, weak frequency shift could be observed when input power is large enough before SBS occurred. Because of the properties of narrower bandwidth and lower threshold power of STRS in fibers, some of applications, such as narrower filter, could be realized.

© 2010 OSA

OCIS Codes
(290.0290) Scattering : Scattering
(290.5870) Scattering : Scattering, Rayleigh

ToC Category:
Scattering

History
Original Manuscript: August 26, 2010
Revised Manuscript: October 6, 2010
Manuscript Accepted: October 7, 2010
Published: October 14, 2010

Citation
Tao Zhu, Xiaoyi Bao, Liang Chen, Hao Liang, and Yongkang Dong, "Experimental study on stimulated Rayleigh scattering in optical fibers," Opt. Express 18, 22958-22963 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-22-22958


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, California, 1995).
  2. E. P. Ippen and R. H. Stolen, “Stimulated Brillouin Scattering in Optical Fibers,” Appl. Phys. Lett. 21(11), 539–541 (1972). [CrossRef]
  3. G. J. Cowle, D. Yu. Stepanov, and Y. T. Chieng, “Brillouin/Erbium fiber lasers,” J. Lightwave Technol. 15(7), 1198–1204 (1997). [CrossRef]
  4. S. Norcia, S. Tonda-Goldstein, D. Dolfi, J. P. Huignard, and R. Frey, “Efficient single-mode Brillouin fiber laser for low-noise optical carrier reduction of microwave signals,” Opt. Lett. 28(20), 1888–1890 (2003). [CrossRef] [PubMed]
  5. Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Opt. Express 16(16), 12148–12153 (2008). [CrossRef] [PubMed]
  6. H. J. Kong, S. K. Lee, D. W. Lee, and H. Guo, “Phase control of a stimulated Brillouin scattering phase conjugate mirror,” Appl. Phys. Lett. 86(5), 131116 (2005).
  7. Y. K. Dong, X. Bao, and L. Chen, “Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarization-maintaining photonic crystal fiber,” Opt. Lett. 34(17), 2590–2592 (2009). [CrossRef] [PubMed]
  8. Z. Y. Zhang and X. Y. Bao, “Continuous and Damped Vibration Detection Based on Fiber Diversity Detection Sensor by Rayleigh Backscattering,” J. Lightwave Technol. 26(7), 832–838 (2008). [CrossRef]
  9. R. J. Robert, N. William, S. B. James, M. Scott, and J. S. Benjamin, “Distributed sensing using Rayleigh scatter in polarization-maintaining fibres for transverse load sensing,” Meas. Sci. Technol. 21(9), 094019 (2010). [CrossRef]
  10. Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010). [CrossRef]
  11. D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, “Stimulated Thermal Rayleigh Scattering,” Phys. Rev. Lett. 19(15), 828–830 (1967). [CrossRef]
  12. T. A. Wiggins, C. W. Cho, D. R. Dietz, and N. D. Foltz, “Stimulated Thermal Rayleigh Scattering in Gases,” Phys. Rev. Lett. 20(16), 831–834 (1968). [CrossRef]
  13. R. M. Herman and M. A. Gray, “Theoretical Prediction of the Stimulated Thermal Rayleigh Scattering in Liquids,” Phys. Rev. Lett. 19(15), 824–828 (1967). [CrossRef]
  14. M. E. Mack, “Stimulated Thermal Light Scattering in the Picosecond Regime,” Phys. Rev. Lett. 22(1), 13–15 (1969). [CrossRef]
  15. K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56(2), 135–138 (1986). [CrossRef] [PubMed]
  16. D. Derickson, Fiber Optic Test and Measurement (Prentice Hall PTR, New Jersey, 1998).
  17. R. W. Boyd, Nonlinear Optics (Academic, California, 2008).
  18. U. C. Paek and C. R. Kurkjian, “Calculation of Cooling Rate and Induced Stresses in Drawing of Optical Fibers,” J. Am. Ceram. Soc. 58(7-8), 330–335 (1975). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited