OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 22964–22972

High-power gain-switched Tm3+-doped fiber laser

Yulong Tang, Lin Xu, Yi Yang, and Jianqiu Xu  »View Author Affiliations

Optics Express, Vol. 18, Issue 22, pp. 22964-22972 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (892 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Gain-switched by a 1.914-µm Tm:YLF crystal laser, a two-stage Tm3+ fiber laser has been achieved 100-W level ~2-µm pulsed laser output with a slope efficiency of ~52%. With the 6-m length of Tm fiber, the laser wavelength was centered at 2020 nm with a bandwidth of ~25 nm. Based on an acousto-optic switch, the pulse repetition rate can be modulated from 500 Hz to 50 kHz, and the laser pulse width can be tuned between 75 ns and ~1 µs. The maximum pulse energy was over 10 mJ, and the maximum pulse peak power was 138 kW. By using the fiber-coiling-induced mode-filtering effect, laser beam quality of M2 = 1.01 was obtained. Further scaling the pulse energy and average power from such kind of gain-switched fiber lasers was also discussed.

© 2010 OSA

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 30, 2010
Manuscript Accepted: October 9, 2010
Published: October 14, 2010

Yulong Tang, Lin Xu, Yi Yang, and Jianqiu Xu, "High-power gain-switched Tm3+-doped fiber laser," Opt. Express 18, 22964-22972 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Lai, W. Xie, R. Wu, Y. Lim, E. Lau, L. Chia, and P. Phua, “A 150- 2-micron diode-pumped Tm:YAG laser,” OSA Trends Opt. Photo. 68, paper WE6, 2002.
  2. M. Schellhorn, S. Ngcobo, C. Bollig, M. Esser, D. Preussler, and K. Nyangaza, “High-power diode-pumped Tm:YLF slab laser,” in Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference. CLEO Europe - EQEC pp. 1–1 (2009).
  3. S. D. Jackson and T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23(18), 1462–1464 (1998). [CrossRef]
  4. S. Jiang, J. Wu, Zh Yao and J. Zong, “104 W Highly Efficient Thulium Doped Germanate Glass Fiber Laser,” Adv. Solid-State Photon. MF3 (2007).
  5. E. Slobodtchikov and P. F. Moulton, “Efficient, High-Power, Tm-doped Silica Fiber Laser,” Adv. Solid-State Photon. MF2 (2007).
  6. G. D. Goodno, L. D. Book, and J. E. Rothenberg, “600-W, Single-Mode, Single-Frequency Thulium Fiber Laser Amplifier,” Proc. SPIE 7195, 71950Y–1~10 (2009).
  7. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-Doped Fiber Lasers: Fundamentals and Power Scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009). [CrossRef]
  8. http://www.qpeak.com/Aboutus/news.shtml .
  9. J. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. Chen, Y. Bai, P. J. Petzar, and M. Petros, “1 J/pulse Q-switched 2 µm solid-state laser,” Opt. Lett. 31(4), 462–464 (2006). [CrossRef] [PubMed]
  10. B. C. Dickinson, S. D. Jackson, and T. A. King, “10 mJ total output from a gain-switched Tm-doped fibre laser,” Opt. Commun. 182(1-3), 199–203 (2000). [CrossRef]
  11. G. Imeshev and M. E. Fermann, “230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber,” Opt. Express 13(19), 7424–7431 (2005). [CrossRef] [PubMed]
  12. M. Eichhorn and S. D. Jackson, “Actively Q-switched Tm3+-doped and Tm3+,Ho3+-codoped Silica Fiber Lasers,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference 2008, (San Jose, CA, 2008).
  13. M. Eichhorn and S. D. Jackson, “High-pulse-energy actively Q-switched Tm3+-doped silica 2 µm fiber laser pumped at 792 nm,” Opt. Lett. 32(19), 2780–2782 (2007). [CrossRef] [PubMed]
  14. M. Eichhorn and S. D. Jackson, “High-pulse-energy, actively Q-switched Tm3+,Ho3+ -codoped silica 2 µm fiber laser,” Opt. Lett. 33(10), 1044–1046 (2008). [CrossRef] [PubMed]
  15. D. Creeden, P. Budni, P. A. Ketteridge, T. M. Pollak, E. P. Chicklis, G. Frith, and B. Samson, “High Power Pulse Amplification in Tm-Doped Fiber,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD), Optical Society of America, paper CFD1(Washington DC, 2008).
  16. D. Creeden, P. A. Ketteridge, P. A. Budni, S. D. Setzler, Y. E. Young, J. C. McCarthy, K. Zawilski, P. G. Schunemann, T. M. Pollak, E. P. Chicklis, and M. Jiang, “Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2 microm Tm-doped fiber laser,” Opt. Lett. 33(4), 315–317 (2008). [CrossRef] [PubMed]
  17. R. J. De Young and N. P. Barnes, “Profiling atmospheric water vapor using a fiber laser lidar system,” Appl. Opt. 49(4), 562–567 (2010). [CrossRef] [PubMed]
  18. B. C. Dickinson, S. D. Jackson, and T. A. King, “10 mJ total output from a gain-switched Tm-doped fibre laser,” Opt. Commun. 182(1-3), 199–203 (2000). [CrossRef]
  19. Y. J. Zhang, B. Q. Yao, Y. L. Ju, and Y. Zh. Wang, “Gain-switched Tm3+-doped double-clad silica fiber laser,” Opt. Express 13(4), 1085–1089 (2005). [CrossRef] [PubMed]
  20. S. D. Jackson and T. A. King, “Efficient Gain-Switched Operation of a Tm-Doped Silica Fiber Laser,” IEEE J. Quantum Electron. 34(5), 779–789 (1998). [CrossRef]
  21. M. Jiang and P. Tayebati, “Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser,” Opt. Lett. 32(13), 1797–1799 (2007). [CrossRef] [PubMed]
  22. Y. L. Tang and J. Q. Xu, “Effects of excited-state absorption on self-pulsing in Tm3+-doped fiber lasers,” J. Opt. Soc. Am. B 27(2), 179–186 (2010). [CrossRef]
  23. G. Frith, D. G. Lancaster, and S. D. Jackson, “85 W Tm3+-doped silica fibre laser,” Electron. Lett. 41(12), 687–688 (2005). [CrossRef]
  24. S. D. Jackson, “Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers,” Opt. Commun. 230(1-3), 197–203 (2004). [CrossRef]
  25. E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, and S. A. Payne, “115-W Tm:YAG diode-pumped solid-state laser,” IEEE J. Sel. Top. Quantum Electron. 33(9), 1592–1600 (1997). [CrossRef]
  26. J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75(4-5), 477–479 (2002). [CrossRef]
  27. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996). [CrossRef] [PubMed]
  28. W. Koechner, Solid-state laser engineering, 5th ed., (Springer-Verlag, Berlin, 1995), p. 685.
  29. C. D. Brooks and F. Di Teodoro, “1-mJ energy, 1-MW peak-power, 10-W average-power, spectrally narrow, diffraction-limited pulses from a photonic-crystal fiber amplifier,” Opt. Express 13(22), 8999–9002 (2005). [CrossRef] [PubMed]
  30. F. Di Teodoro and C. D. Brooks, “1.1 MW peak-power, 7 W average-power, high-spectral-brightness, diffraction-limited pulses from a photonic crystal fiber amplifier,” Opt. Lett. 30(20), 2694–2696 (2005). [CrossRef] [PubMed]
  31. J. Q. Xu, M. Prabhu, J. R. Lu, K. I. Ueda, and D. Xing, “Efficient double-clad thulium-doped fiber laser with a ring cavity,” Appl. Opt. 40(12), 1983–1988 (2001). [CrossRef]
  32. M.-Y. Cheng, Y.-Ch. Chang, A. Galvanauskas, P. Mamidipudi, R. Changkakoti, and P. Gatchell, “High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-µm core highly multimode Yb-doped fiber amplifiers,” Opt. Lett. 30(4), 358–360 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited