OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 23016–23023

Strong nonlinear coupling between an ultracold atomic ensemble and a nanomechanical oscillator

Gang Chen, Yongping Zhang, Liantuan Xiao, J.-Q. Liang, and Suotang Jia  »View Author Affiliations


Optics Express, Vol. 18, Issue 22, pp. 23016-23023 (2010)
http://dx.doi.org/10.1364/OE.18.023016


View Full Text Article

Enhanced HTML    Acrobat PDF (798 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new type of collective nonlinear coupling is presented via the indirect interaction between an ultracold atomic ensemble and a nanomechanical oscillator. More intriguingly, its interaction strength is enhanced largely with a factor of the atomic number, and thus, reaches a strong coupling regime within current experimental parameters. For the large atomic number, this obtained nonlinear coupling describes the interaction between the phonon and a pair of quasiparticle. Physically, this pair of quasiparticle is excited from the ultracold atomic ensemble when a phonon is emitted and vice versa. Based on these collective excitations, the nonlinear optical processes with the χ(2) term are simulated successfully.

© 2010 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(020.1475) Atomic and molecular physics : Bose-Einstein condensates

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: September 8, 2010
Revised Manuscript: October 4, 2010
Manuscript Accepted: October 4, 2010
Published: October 15, 2010

Citation
Gang Chen, Yongping Zhang, Liantuan Xiao, J. -Q. Liang, and Suotang Jia, "Strong nonlinear coupling between an ultracold atomic ensemble and a nanomechanical oscillator," Opt. Express 18, 23016-23023 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-22-23016


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. J. Kippenberg, and K. J. Vahala, "Cavity optomechanics: back-action at the mesoscale," Science 321, 1172 (2008). [CrossRef] [PubMed]
  2. F. Marquardt, and S. M. Girvin, "Optomechanics," Physics 2, 40 (2009). [CrossRef]
  3. S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, "Self-cooling of a micromirror by radiation pressure," Nature 444, 67 (2006). [CrossRef] [PubMed]
  4. C. A. Regal, J. D. Teufel, and K. W. Lehnert, "Measuring nanomechanical motion with a microwave cavity interferometer," Nat. Phys. 4, 555 (2008). [CrossRef]
  5. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, "Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane," Nature 452, 72 (2008). [CrossRef] [PubMed]
  6. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, "A picogram- and nanometre-scale photonic crystal optomechanical cavity," Nature 459, 550 (2009). [CrossRef] [PubMed]
  7. S. Gröblacher, K. Hammerer, M. R. Vanner, and M. A. Aspemeyer, "Observation of strong coupling between a micromechanical resonator and an optical cavity field," Nature 460, 724 (2009). [CrossRef] [PubMed]
  8. C. Genes, D. Vitali, and P. Tombesi, "Emergence of atom-light-mirror entanglement inside an optical cavity," Phys. Rev. A 77, 050307 (2008). [CrossRef]
  9. K. Hammerer, M. Aspelmeyer, E. S. Polzik, and P. Zoller, "Establishing Einstein-Poldosky-Rosen channels between nanomechanics and atomic ensembles," Phys. Rev. Lett. 102, 020501 (2009). [CrossRef] [PubMed]
  10. C. Genes, H. Ritsch, and D. Vitali, "Micromechanical oscillator ground-state cooling via resonant intracavity optical gain or absorption," Phys. Rev. A 80, 061803 (2009). [CrossRef]
  11. K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, "Strong coupling of a mechanical oscillator and a single atom," Phys. Rev. Lett. 103, 063005 (2009). [CrossRef] [PubMed]
  12. M. O. Scully, and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997).
  13. S. L. Braunstein, and P. van Loock, "Quantum information with continuous variables," Rev. Mod. Phys. 77, 513 (2005). [CrossRef]
  14. X. Zhou, and A. Mizel, "Nonlinear coupling of nanomechanical resonators to Josephson quantum circuits," Phys. Rev. Lett. 97, 267201 (2006). [CrossRef]
  15. K. Jacobs, "Engineering quantum states of a nanoresonator via a simple auxiliary system," Phys. Rev. Lett. 99, 117203 (2007). [CrossRef] [PubMed]
  16. K. Jacobs, and A. J. Landahl, "Engineering giant nonlinearities in quantum nanosystems," Phys. Rev. Lett. 103, 067201 (2009). [CrossRef] [PubMed]
  17. F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Köhl, and T. Esslinger, "Cavity QED with a Bose-Einstein condensate," Nature 450, 268 (2007). [CrossRef] [PubMed]
  18. S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn, and W. Ketterle, "Observation of Feshbach resonances in a Bose-Einstein condensate," Nature 392, 151 (1998). [CrossRef]
  19. J. Larson, "Circuit QED scheme for realization of the Lipkin-Meshkov-Glick model," Europhys. Lett. 90, 54001 (2010). [CrossRef]
  20. H. Fröhlich, "Theory of the superconducting state. I. the ground state at the absolute zero of temperature," Phys. Rev. 79, 845 (1950). [CrossRef]
  21. G. Chen, X. Wang, J.-Q. Liang, and Z. D. Wang, "Exotic quantum phase transitions in a Bose-Einstein condensate coupled to an optical cavity," Phys. Rev. A 78, 023634 (2008). [CrossRef]
  22. G. Chen, J.-Q. Liang, and S. Jia, "Interaction-induced Lipkin-Meshkov-Glick model in a Bose-Einstein condensate inside an optical cavity," Opt. Express 17, 19682 (2009).
  23. G. S. Agarwal, "Vacuum-field Rabi splittings in microwave absorption by Rydberg atoms in a cavity," Phys. Rev. Lett. 53, 1732 (1984). [CrossRef]
  24. I. Wilson-Rae, N. Nooshi, J. Dobrindt, T. J. Kippenberg, and W. Zwerger, "Cavity-assisted back action cooling of mechanical resonators," N. J. Phys. 10, 095007 (2008). [CrossRef]
  25. E. M. Purcell, "Resonance absorption by nuclear magnetic moments in a solid," Phys. Rev. 69, 37 (1946). [CrossRef]
  26. H. J. Kimble, in Cavity Quantum Electrodynamics, edited by P. Berman (Academic, New York, 1994).
  27. K. Hammerer, A. S. Sørensen, and E. S. Polzik, "Quantum interface between light and atomic ensembles," Rev. Mod. Phys. 82, 1041 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited