OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 23079–23087

High bandwidth on-chip silicon photonic interleaver

Lian-Wee Luo, Salah Ibrahim, Arthur Nitkowski, Zhi Ding, Carl B. Poitras, S. J. Ben Yoo, and Michal Lipson  »View Author Affiliations


Optics Express, Vol. 18, Issue 22, pp. 23079-23087 (2010)
http://dx.doi.org/10.1364/OE.18.023079


View Full Text Article

Acrobat PDF (1623 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a 120 GHz 3-dB bandwidth on-chip silicon photonic interleaver with a flat passband over a broad spectral range of 70 nm. The structure of the interleaver is based on an asymmetric Mach-Zehnder interferometer (MZI) with 3 ring resonators coupled to the arms of the MZI. The transmission spectra of this device depict a rapid roll-off on the band edges, where the 20-dB bandwidth is measured to be 142 GHz. This device is optimized for operation in the C-band with a channel crosstalk as low as −20 dB. The device also has full reconfiguration capability to compensate for fabrication imperfections.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(250.5300) Optoelectronics : Photonic integrated circuits
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

History
Original Manuscript: August 17, 2010
Revised Manuscript: October 1, 2010
Manuscript Accepted: October 1, 2010
Published: October 18, 2010

Citation
Lian-Wee Luo, Salah Ibrahim, Arthur Nitkowski, Zhi Ding, Carl B. Poitras, S. J. Ben Yoo, and Michal Lipson, "High bandwidth on-chip silicon photonic interleaver," Opt. Express 18, 23079-23087 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-22-23079


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. G. P. Agrawal, “Fiber-optic communication systems,” 3rd ed. (Wiley, 2002).
  2. M. Haurylau, G. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: challenges and critical directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006). [CrossRef]
  3. A. S. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004). [CrossRef] [PubMed]
  4. S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator,” in The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE,2007), 537–538.
  5. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach–Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007). [CrossRef] [PubMed]
  6. T. Yin, R. Cohen, M. M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. J. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate,” Opt. Express 15(21), 13965–13971 (2007). [CrossRef] [PubMed]
  7. Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2009). [CrossRef]
  8. L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express 17(10), 7901–7906 (2009). [CrossRef] [PubMed]
  9. S. Assefa, F. N. A. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010). [CrossRef] [PubMed]
  10. S. Cao, J. Chen, J. N. Damask, C. R. Doerr, L. Guiziou, G. Harvey, Y. Hibino, H. Li, S. Suzuki, K. Y. Wu, and P. Xie, “Interleaver technology: comparisons and applications requirements,” J. Lightwave Technol. 22(1), 281–289 (2004). [CrossRef]
  11. K. Jinguji, “Synthesis of coherent two-port optical delay-line circuit with ring waveguides,” J. Lightwave Technol. 14(8), 1882–1898 (1996). [CrossRef]
  12. K. Jinguji and M. Oguma, “Optical half-band filters,” J. Lightwave Technol. 18(2), 252–259 (2000). [CrossRef]
  13. M. Oguma, T. Kitoh, Y. Inoue, T. Mizuno, T. Shibata, M. Kohtoku, and Y. Hibino, “Compact and low-loss interleave filter employing lattice-form structure and silica-based waveguide,” J. Lightwave Technol. 22(3), 895–902 (2004). [CrossRef]
  14. J. F. Song, Q. Fang, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Passive ring-assisted Mach–Zehnder interleaver on silicon-on-insulator,” Opt. Express 16(12), 8359–8365 (2008). [CrossRef] [PubMed]
  15. J. F. Song, S. H. Tao, Q. Fang, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Thermo-optical enhanced silicon wire interleavers,” IEEE Photon. Technol. Lett. 20(24), 2165–2167 (2008). [CrossRef]
  16. J. F. Song, H. Zhao, Q. Fang, S. H. Tao, T. Y. Liow, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Effective thermo-optical enhanced cross-ring resonator MZI interleavers on SOI,” Opt. Express 16(26), 21476–21482 (2008). [CrossRef] [PubMed]
  17. S. Darmawan, Y. M. Landobasa, P. Dumon, R. Baets, and M. K. Chin, “Nested-ring Mach–Zehnder interferometer in silicon-on-insulator,” IEEE Photon. Technol. Lett. 20(1), 9–11 (2008). [CrossRef]
  18. R. Essiambre and P. J. Winzer, “Transport challenges in optically-routed networks,” Proc. SPIE 6021, 694–704 (2005).
  19. JDSU Communications Components, “Bandsplitters 200 GHz Channel Spacing” (JDS Uniphase Corporation, 2010). http://www.jdsu.com/product-literature/bandsplitter200_ds_cc_ae.pdf .
  20. K. Oda, N. Takato, H. Toba, and K. Nosu, “A wideband guided-wave periodic multi demultiplexer with a ring resonator for optical FDM transmission-systems,” J. Lightwave Technol. 6(6), 1016–1023 (1988). [CrossRef]
  21. C. K. Madsen, and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).
  22. Z. P. Wang, S. J. Chang, C. Y. Ni, and Y. J. Chen, “A high-performance ultracompact optical interleaver based on double-ring assisted Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett. 19(14), 1072–1074 (2007). [CrossRef]
  23. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002). [CrossRef]
  24. H. Takahashi, P. Carlsson, K. Nishimura, and M. Usami, “Analysis of negative group delay response of all-pass ring resonator with Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 16(9), 2063–2065 (2004). [CrossRef]
  25. W. M. J. Green, R. K. Lee, G. A. Derose, A. Scherer, and A. Yariv, “Hybrid InGaAsP-InP Mach–Zehnder racetrack resonator for thermooptic switching and coupling control,” Opt. Express 13(5), 1651–1659 (2005). [CrossRef] [PubMed]
  26. W. D. Sacher and J. K. S. Poon, “Characteristics of microring resonators with waveguide-resonator coupling modulation,” J. Lightwave Technol. 27(17), 3800–3811 (2009). [CrossRef]
  27. H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17(25), 22271–22280 (2009). [CrossRef] [PubMed]
  28. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008). [CrossRef] [PubMed]
  29. K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach–Zehnder interferometer type optical wave-guide coupler with wavelength-flattened coupling ratio,” Electron. Lett. 26(17), 1326–1327 (1990). [CrossRef]
  30. J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2 x 2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17(26), 24020–24029 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited