OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 23104–23120

Optical precursor fields in nonlinear pulse dynamics

Chris L. Palombini and Kurt E. Oughstun  »View Author Affiliations

Optics Express, Vol. 18, Issue 22, pp. 23104-23120 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2991 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Under certain conditions, ultrashort pulse dynamics in a linear dispersive medium with absorption result in the appearance of optical precursors that dominate the pulse evolution for large propagation distances as the peak amplitude in the initial pulse spectrum decays exponentially. The effects of a nonlinear medium response on this precursor formation is considered using the split-step Fourier method. Comparison of the nonlinear pulse evolution when the full dispersion is used to that when a quadratic Taylor series approximation of the wave number is used shows that the group velocity approximation misses the precursor fields entirely.

© 2010 Optical Society of America

OCIS Codes
(260.2030) Physical optics : Dispersion
(320.5550) Ultrafast optics : Pulses

ToC Category:
Ultrafast Optics

Original Manuscript: September 9, 2010
Revised Manuscript: October 11, 2010
Manuscript Accepted: October 11, 2010
Published: October 18, 2010

Chris L. Palombini and Kurt E. Oughstun, "Optical precursor fields in nonlinear pulse dynamics," Opt. Express 18, 23104-23120 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Sommerfeld, “Über die fortpflanzung des lichtes in disperdierenden medien,” Ann. Phys. (Leipzig)  44, 4, 177–202 (1914).
  2. L. Brillouin, “Über die fortpflanzung des licht in disperdierenden medien,” Ann. Phys. (Leipzig)  44, 4, 177–202 (1914).
  3. L. Brillouin, Wave Propagation and Group Velocity (Academic Press, New York, 1960).
  4. P. Debye, “Näherungsformeln für die zylinderfunktionen für grosse werte des arguments und unbeschränkt verander liche werte des index,” Math. Ann. 67, 535–558 (1909). [CrossRef]
  5. J. A. Stratton, Electromagnetic Theory, (McGraw-Hill, New York, 1941), §5.18.
  6. K. E. Oughstun, and G. C. Sherman, Electromagnetic Pulse Propagation in Causal Dielectrics (Springer-Verlag, Berlin-Heidelberg, 1994).
  7. K. E. Oughstun, Electromagnetic and Optical Pulse Propagation1: Spectral Representations in Temporally Dispersive Media (Springer, New York, 2006). [PubMed]
  8. K. E. Oughstun, Electromagnetic and Optical Pulse Propagation2: Temporal Pulse Dynamics in Dispersive, Attenuative Media (Springer, New York, 2009).
  9. K. E. Oughstun, and G. C. Sherman, “Propagation of electromagnetic pulses in a linear dispersive medium with absorption (the Lorentz medium),” J. Opt. Soc. Am. B 5(4), 817–849 (1988). [CrossRef]
  10. N. A. Cartwright, and K. E. Oughstun, “Uniform asymptotics applied to ultrawideband pulse propagation,” SIAM Rev. 49(4), 628–648 (2007). [CrossRef]
  11. K. E. Oughstun, and C. M. Balictsis, “Gaussian Pulse Propagation in a Dispersive, Absorbing Dielectric,” Phys. Rev. Lett. 77(11), 2210–2213 (1996). [CrossRef]
  12. T. H. Havelock, “The propagation of groups of waves in dispersive media,” Proc. R. Soc. London, Ser. A LXXXI, 398 (1908). [CrossRef]
  13. T. H. Havelock, The Propagation of Disturbances in Dispersive Media (Cambridge U. Press, Cambridge, 1914).
  14. L. Kelvin, “On the waves produced by a single impulse in water of any depth, or in a dispersive medium,” Proc. Roy. Soc., London XLII, 80 (1887).
  15. K. E. Oughstun, and H. Xiao, “Failure of the quasimonochromatic approximation for ultrashort pulse propagation in a dispersive, attenuative medium,” Phys. Rev. Lett. 78(4), 642–645 (1997). [CrossRef]
  16. H. Xiao, and K. E. Oughstun, “Failure of the group velocity description for ultrawideband pulse propagation in a double resonance Lorentz model dielectric,” J. Opt. Soc. Am. B 16(10), 1773–1785 (1999). [CrossRef]
  17. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 1989).
  18. R. H. Hardin, and F. D. Tappert, “Applications of the split-step Fourier method to the solution of nonlinear and variable coefficient wave equations,” SIAM Rev. 15(2), 423 (1973).
  19. T. A. Laine, and A. T. Friberg, “Self-guided waves and exact solutions of the nonlinear Helmholtz equation,” J. Opt. Soc. Am. B 17(5), 751–757 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited