OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 23183–23195

Proposal and analysis of narrow band transmission asymmetric directional couplers with Bragg grating induced phase matching

Kamal Muhieddine, Anatole Lupu, Eric Cassan, and Jean-Michel Lourtioz  »View Author Affiliations

Optics Express, Vol. 18, Issue 22, pp. 23183-23195 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1099 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper addresses the design of narrow band transmission co-directional couplers suitable for wavelength division multiplexing applications. The originality of the proposed asymmetric two-waveguide configuration stems from the use of Bragg gratings operated near band gap to simultaneously achieve high wavelength dispersion and selectivity as well as co-directional phase matching between guides which would be mismatched otherwise. Our theoretical analysis reveals the existence of a minimum Bragg grating coupling strength for co-directional phase matching. The threshold condition is analytically determined, and a coupled mode theory (CMT) four-wave model is successfully applied to describe the behavior of the investigated device. A numerical validation of CMT results is reported in the case of slab waveguides with Bragg grating assisted coupling. The proposed design is shown to be compatible with existing micro-nano-fabrication technology.

© 2010 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Integrated Optics

Original Manuscript: August 11, 2010
Revised Manuscript: September 30, 2010
Manuscript Accepted: October 10, 2010
Published: October 19, 2010

Kamal Muhieddine, Anatole Lupu, Eric Cassan, and Jean-Michel Lourtioz, "Proposal and analysis of narrow band transmission asymmetric directional couplers with Bragg grating induced phase matching," Opt. Express 18, 23183-23195 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. F. Taylor, “Frequency-selective coupling in parallel dielectric waveguides,” Opt. Commun. 8(4), 421–425 (1973). [CrossRef]
  2. C. Elachi and C. Yeh, “Frequency selective coupler for integrated optics systems,” Opt. Commun. 7(3), 201–204 (1973). [CrossRef]
  3. D. Marcuse, “Directional couplers made of nonidentical asymmetric slabs. Part I: Synchronous couplers,” J. Lightwave Technol. 5(1), 113–118 (1987). [CrossRef]
  4. D. Marcuse, “Directional couplers made of nonidentical asymmetric slabs. Part II: Grating-assisted couplers,” J. Lightwave Technol. 5(2), 268–273 (1987). [CrossRef]
  5. W.-P. Huang, “Coupled mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11(3), 963–983 (1994). [CrossRef]
  6. R. C. Alferness and R. V. Schmidt, “Tunable optical waveguide directional coupler filter,” Appl. Phys. Lett. 33(2), 161–163 (1978). [CrossRef]
  7. R. C. Alferness, U. Koren, L. L. Buhl, B. I. Miller, M. G. Young, T. L. Koch, G. Raybon, and C. A. Burrus, “Broadly tunable InGaAsP/InP laser based on a vertical coupler filter with 57-nm tuning range,” Appl. Phys. Lett. 60(26), 3209–3211 (1992). [CrossRef]
  8. P.-J. Rigole, S. Nilsson, L. Backbom, T. Klinga, J. Wallin, B. Stalnacke, E. Berglind, and B. Stoltz, “114-nm wavelength tuning range of a vertical grating assisted codirectional coupler laser with a super structure grating distributed Bragg reflector,” IEEE Photon. Technol. Lett. 7(7), 697–699 (1995). [CrossRef]
  9. C. Bornholdt, F. Kappe, R. Müller, H.-P. Nolting, F. Reier, R. Stenzel, H. Venghaus, and C. M. Weinert, “Meander coupler, a novel wavelength division multiplexer/demultiplexer,” Appl. Phys. Lett. 57(24), 2517–2519 (1990). [CrossRef]
  10. Y.-H. Jan, M. E. Heimbuch, L. A. Coldren, and S. P. DenBaars, “InP/InGaAsP grating-assisted codirectional coupler tunable receiver with a 30nm wavelength tuning range,” Electron. Lett. 32(18), 1697–1698 (1996). [CrossRef]
  11. A. Lupu, H. Sik, A. Mereuta, P. Boulet, M. Carré, S. Slempkes, A. Ougazzaden, and A. Carenco, “Three-waveguides two-grating codirectional coupler for 1.3-/1.3+/1.5µm demultiplexing in transceiver,” Electron. Lett. 36(24), 2030–2031 (2000). [CrossRef]
  12. A. Lupu, P. Win, H. Sik, P. Boulet, M. Carré, S. Slempkes, and A. Carenco, “Tunable filter with box like spectral response for 1.28/1.32 µm duplexer application,” Electron. Lett. 35(2), 174–175 (1999). [CrossRef]
  13. R. C. Alferness, “Optical directional couplers with weighted coupling,” Appl. Phys. Lett. 35, 109–126 (1978).
  14. K. A. Winick, “Design of grating-assisted waveguide couplers with weighted coupling,” J. Lightwave Technol. 9(11), 1481–1492 (1991). [CrossRef]
  15. B. E. Little, C. Wu, and W. P. Huang, “Synthesis of codirectional couplers with ultralow sidelobes and minimum bandwidth,” Opt. Lett. 20(11), 1259–1261 (1995). [CrossRef] [PubMed]
  16. C. Wu, C. Rolland, N. Puetz, R. Bruce, K. D. Chik, and J. M. Xu, “A vertically coupled InGaAsP/InP directional coupler filter of ultranarrow bandwidth,” IEEE Photon. Technol. Lett. 3(6), 519–521 (1991). [CrossRef]
  17. B. Liu, A. Shakouri, P. Abraham, Y. J. Chiu, S. Zhang, and J. E. Bowers, “Fused InP–GaAs Vertical Coupler Filters,” IEEE Photon. Technol. Lett. 11, 93–95 (1995).
  18. S.-K. Han, R. V. Ramaswamy, and R. F. Tavlykaev, “Highly asymmetrical vertical coupler wavelength filter in InGaAlAs/InP,” Electron. Lett. 33, 31 (1999).
  19. B. R. West and A. S. Helmy, “Dispersion tailoring of the quarter-wave Bragg reflection waveguide,” Opt. Express 14(9), 4073–4086 (2006). [CrossRef] [PubMed]
  20. R. Das and K. Thyagarajan, “Strong dispersive features of dual Bragg cladding waveguides using higher-order mode-coupling mechanism,” J. Opt. A, Pure Appl. Opt. 11(10), 105410 (2009). [CrossRef]
  21. M. Dainese, M. Swillo, L. Wosinski, and L. Thylen, “Directional coupler wavelength selective filter based on dispersive Bragg reflection waveguide,” Opt. Commun. 260(2), 514–521 (2006). [CrossRef]
  22. A. Ankiewicz and G.-D. Peng, “Narrow bandpass filter using Bragg grating coupler in transmission mode,” Electron. Lett. 33(25), 2151–2153 (1997). [CrossRef]
  23. A. Ankiewicz, Z. H. Wang, and G.-D. Peng, “Analysis of narrow bandpass filter using coupler with Bragg grating in transmission,” Opt. Commun. 156(1-3), 27–31 (1998). [CrossRef]
  24. P. Bienstman and R. Baets, “Optical Modelling of Photonic Crystals and VCSELs using Eigenmode Expansion and Perfectly Matched Layers,” Opt. Quantum Electron. 33(4/5), 327–341 (2001). [CrossRef]
  25. http://camfr.sourceforge.net .
  26. P. Yeh and H. F. Taylor, “Contradirectional frequency-selective couplers for guided-wave optics,” Appl. Opt. 19(16), 2848–2855 (1980). [CrossRef] [PubMed]
  27. M. S. Whalen, M. D. Divino, and R. C. Alferness, “Demonstration of a narrowband Bragg-reflection filter in a single-mode fibre directional coupler,” Electron. Lett. 22(12), 681–682 (1986). [CrossRef]
  28. R. R. A. Syms, “Optical directional coupler with a grating overlay,” Appl. Opt. 24(5), 717–726 (1985). [CrossRef] [PubMed]
  29. R. März and H. P. Nolting, “Spectral properties of asymmetrical optical directional couplers with periodic structures,” Opt. Quantum Electron. 19(5), 273–287 (1987). [CrossRef]
  30. L. Dong, P. Hua, T. A. Birks, L. Reekie, and P. S. J. Russell, “Novel add–drop filters for wavelength division multiplexing optical fiber systems using a Bragg grating assisted mismatched coupler,” IEEE Photon. Technol. Lett. 8(12), 1656–1658 (1996). [CrossRef]
  31. S. S. Orlov, A. Yariv, and S. Van Essen, “Coupled-mode analysis of fiber-optic add drop filters for dense wavelength-division multiplexing,” Opt. Lett. 22(10), 688–690 (1997). [CrossRef] [PubMed]
  32. T. Erdogan, “Optical add–drop multiplexer based on an asymmetric Bragg coupler,” Opt. Commun. 157(1-6), 249–264 (1998). [CrossRef]
  33. I. Baumann, J. Seifert, W. Nowak, and M. Sauer, “Compact all-fiber add-drop-multiplexer using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 8(10), 1331–1333 (1996). [CrossRef]
  34. J.-L. Archambault, P. St. J. Russell, S. Barcelos, P. Hua, and L. Reekie, “Grating-frustrated coupler: a novel channel-dropping filter in single-mode optical fiber,” Opt. Lett. 19(3), 180–182 (1994). [CrossRef] [PubMed]
  35. A.-C. Jacob-Poulin, R. Valle’e, S. LaRochelle, D. Faucher, and G. R. Atkins, “Channel-dropping filter based on a grating-frustrated two-core fiber,” J. Lightwave Technol. 18(5), 715–720 (2000). [CrossRef]
  36. A. Yesayan and R. Vallée, “Optimized grating-frustrated coupler,” Opt. Lett. 26(17), 1329–1331 (2001). [CrossRef]
  37. A. Yesayan and R. Vallée, “Zero backreflection condition for a grating-frustrated coupler,” J. Opt. Soc. Am. B 20(7), 1418–1426 (2003). [CrossRef]
  38. N. Imoto, “An analysis for contradirectional-coupler-type optical grating filters,” J. Lightwave Technol. 3(4), 895–900 (1985). [CrossRef]
  39. J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am. A 11(4), 1307–1320 (1994). [CrossRef]
  40. A. Arraf, L. Poladian, C. M. de Sterke, and T. G. Brown, “Effective-medium approach for counterpropagating waves in nonuniform Bragg gratings,” J. Opt. Soc. Am. A 14(5), 1137–1143 (1997). [CrossRef]
  41. A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. 13(4), 233–253 (1977). [CrossRef]
  42. B. Lombardet, L. A. Dunbar, R. Ferrini, and R. Houdré, “Fourier analysis of Bloch wave propagation in photonic crystals,” J. Opt. Soc. Am. B 22(6), 1179–1190 (2005). [CrossRef]
  43. R. R. A. Syms, “Improved coupled mode theory for codirectionally and contradirectionally coupled waveguide arrays,” J. Opt. Soc. Am. A 8(7), 1062–1069 (1991). [CrossRef]
  44. J. Hong and W. P. Huang, “Contra-directional coupling in grating-assisted guided-wave devices,” J. Lightwave Technol. 10(7), 873–881 (1992). [CrossRef]
  45. A. Hardy, “A unified approach to coupled-mode phenomena,” IEEE J. Quantum Electron. 34(7), 1109–1116 (1998). [CrossRef]
  46. N. Izhaky and A. Hardy, “Analysis of grating-assisted backward coupling employing the unified coupled-mode formalism,” J. Opt. Soc. Am. A 16(6), 1303–1311 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited