OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 23204–23211

Broadband dispersion-free optical cavities based on zero group delay dispersion mirror sets

Li-Jin Chen, Guoqing Chang, Chih-Hao Li, Andrew J. Benedick, David F. Philips, Ronald L. Walsworth, and Franz X. Kärtner  »View Author Affiliations


Optics Express, Vol. 18, Issue 22, pp. 23204-23211 (2010)
http://dx.doi.org/10.1364/OE.18.023204


View Full Text Article

Enhanced HTML    Acrobat PDF (1104 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A broadband dispersion-free optical cavity using a zero group delay dispersion (zero-GDD) mirror set is demonstrated. In general zero-GDD mirror sets consist of two or more mirrors with opposite group delay dispersion (GDD), that when used together, form an optical cavity with vanishing dispersion over an enhanced bandwidth in comparison with traditional low GDD mirrors. More specifically, in this paper, we show a realization of such a two-mirror cavity, where the mirrors show opposite GDD and simultaneously a mirror reflectivity of 99.2% over 100 nm bandwidth (480 nm – 580 nm).

© 2010 OSA

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(230.4040) Optical devices : Mirrors
(310.4165) Thin films : Multilayer design

ToC Category:
Thin Films

History
Original Manuscript: August 26, 2010
Revised Manuscript: October 13, 2010
Manuscript Accepted: October 14, 2010
Published: October 19, 2010

Citation
Li-Jin Chen, Guoqing Chang, Chih-Hao Li, Andrew J. Benedick, David F. Philips, Ronald L. Walsworth, and Franz X. Kärtner, "Broadband dispersion-free optical cavities based on zero group delay dispersion mirror sets," Opt. Express 18, 23204-23211 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-22-23204


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. X. Kärtner, U. Morgner, R. Ell, T. Schibli, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Ultrabroadband double-chirped mirror pairs for generation of octave spectra,” J. Opt. Soc. Am. B 18(6), 882–885 (2001). [CrossRef]
  2. V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007). [CrossRef]
  3. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002). [CrossRef] [PubMed]
  4. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005). [CrossRef] [PubMed]
  5. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311(5767), 1595–1599 (2006). [CrossRef] [PubMed]
  6. Z. Jiang, D. E. Leaird, and A. M. Weiner, “Line-by-line pulse shaping control for optical arbitrary waveform generation,” Opt. Express 13(25), 10431–10439 (2005). [CrossRef] [PubMed]
  7. C. H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008). [CrossRef] [PubMed]
  8. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008). [CrossRef] [PubMed]
  9. D. A. Braje, M. S. Kirchner, S. Osterman, T. M. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48(1), 57–66 (2008). [CrossRef]
  10. J. R. Birge and F. X. Kärtner, “Efficient optimization of multilayer coatings for ultrafast optics using analytic gradients of dispersion,” Appl. Opt. 46(14), 2656–2662 (2007). [CrossRef] [PubMed]
  11. A. J. Benedick, G. Chang, J. R. Birge, L.-J. Chen, A. G. Glenday, C.-H. Li, D. F. Phillips, A. Szentgyorgyi, S. Korzennik, G. Furesz, R. L. Walsworth, and F. X. Kärtner, “Visible wavelength astro-comb,” Opt. Express 18(18), 19175–19184 (2010). [CrossRef] [PubMed]
  12. G. Chang, L.-J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett. 35(14), 2361–2363 (2010). [CrossRef] [PubMed]
  13. A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-Pulse Laser Damage in Transparent Materials as a Function of Pulse Duration,” Phys. Rev. Lett. 82(19), 3883–3886 (1999). [CrossRef]
  14. F. Gori and G. Guattari, “Bessel-Gauss Beams,” Opt. Commun. 64(6), 491–495 (1987). [CrossRef]
  15. W. P. Putnam, G. Abram, E. L. Falcão-Filho, J. R. Birge and F. X. Kärtner, “High-Intensity Bessel-Gauss Beam Enhancement Cavities,” CLEO/QELS 2010, paper CMD1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited