OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 23236–23246

Determination of the vacuum optomechanical coupling rate using frequency noise calibration

M. L. Gorodetksy, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg  »View Author Affiliations

Optics Express, Vol. 18, Issue 22, pp. 23236-23246 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (2038 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The strength of optomechanical interactions in a cavity optomechanical system can be quantified by a vacuum coupling rate g0 analogous to cavity quantum electrodynamics. This single figure of merit removes the ambiguity in the frequently quoted coupling parameter defining the frequency shift for a given mechanical displacement, and the effective mass of the mechanical mode. Here we demonstrate and verify a straightforward experimental technique to derive the vacuum optomechanical coupling rate. It only requires applying a known frequency modulation of the employed electromagnetic probe field and knowledge of the mechanical oscillator’s occupation. The method is experimentally verified for a micromechanical mode in a toroidal whispering-gallery-resonator and a nanomechanical oscillator coupled to a toroidal cavity via its near field.

© 2010 Optical Society of America

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: September 22, 2010
Manuscript Accepted: October 11, 2010
Published: October 19, 2010

M. L. Gorodetsky, A. Schliesser, G. Anetsberger, S. Deleglise, and T. J. Kippenberg, "Determination of the vacuum optomechanical coupling rate using frequency noise calibration," Opt. Express 18, 23236-23246 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. B. Braginsky and Y. I. Vorontsov, "Quantum-mechanical limitations in macroscopic experiments and modern experimental technique," Sov. Phys. Usp. 17, 644-650 (1975). [CrossRef]
  2. C. M. Caves, "Quantum-mechanical noise in an interferometer," Phys. Rev. D 23, 1693 (1981). [CrossRef]
  3. F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, "Quantum theory of cavity-assisted sideband cooling of mechanical motion," Phys. Rev. Lett. 99, 093902 (2007). [CrossRef] [PubMed]
  4. I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, "Theory of ground state cooling of a mechanical oscillator using dynamical back-action," Phys. Rev. Lett. 99, 093901 (2007). [CrossRef] [PubMed]
  5. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, "Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity," Phys. Rev. Lett. 95, 033901 (2005). [CrossRef] [PubMed]
  6. H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, "Radiation-pressure-driven micro-mechanical oscillator," Opt. Express 13, 5293-5301 (2005). [CrossRef] [PubMed]
  7. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, "Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode," Phys. Rev. Lett. 94, 223902 (2005). [CrossRef] [PubMed]
  8. K. J. Vahala, "Back-action limit of linewidth in an optomechanical oscillator," Phys. Rev. A 78, 023832 (2008). [CrossRef]
  9. T. J. Kippenberg and K. J. Vahala, "Cavity Optomechanics: Back-Action at the Mesoscale," Science 321, 1172-1176 (2008). [CrossRef] [PubMed]
  10. F. Marquardt and S. M. Girvin, "Optomechanics," Physics 2, 40 (2009). [CrossRef]
  11. A. Schliesser, and T. J. Kippenberg, "Cavity optomechanics with silica microresonators," in "Advances in atomic, molecular and optical physics," vol. 58, E. Arimondo, P. Berman, and C. C. Lin, eds. (Elsevier Academic Press, 2010), chap. 5, pp. 207-323.
  12. C. K. Law, "Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation," Phys. Rev. A 51, 2537-2541 (1995). [CrossRef] [PubMed]
  13. A. Gillespie and F. Raab, "Thermally excited vibrations of the mirrors of laser interferometer gravitational wave detectors," Phys. Rev. D Part. Fields 52, 577-585 (1995). [CrossRef]
  14. S. Gigan, H. R. Böhm, M. Paternosto, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, "Self-cooling of a micromirror by radiation pressure," Nature 444, 67-70 (2006). [CrossRef] [PubMed]
  15. O. Arcizet, C. Molinelli, P.-F. Briant, T. anf Cohadon, A. Heidmann, J.-M. Mackowksi, C. Michel, L. Pinard, O. Francais, and L. Rousseau, "Experimental optomechanics with silicon micromirrors," N. J. Phys. 10, 125021 (2008). [CrossRef]
  16. J. Hofer, A. Schliesser, and T. J. Kippenberg, "Cavity optomechanics with ultra-high Q crystalline microresonators," Phys. Rev. A 82, 031804 (2010). [CrossRef]
  17. V. S. Ilchenko, M. L. Gorodetsky, and S. P. Vyatchanin, "Coupling and tunability of optical whispering-gallery modes: a basis for coordinate meter," Opt. Commun. 107, 41-48 (1994). [CrossRef]
  18. C. A. Regal, J. D. Teufel, and K. W. Lehnert, "Measuring nanomechanical motion with a microwave cavity interferometer," Nat. Phys. 4, 555-560 (2008). [CrossRef]
  19. A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. Thomson, S. M. Girvin, A. A. Clerk, F. Marquardt, and J. G. E. Harris, "Dispersive optomechanics: a membrane inside a cavity," N. J. Phys. 10, 095008 (2008). [CrossRef]
  20. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, "Optomechanical crystals," Nature 462, 78-82 (2009). [CrossRef] [PubMed]
  21. V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko, and S. P. Vyatchanin, "On the ultimate sensitivity in coordinate measurements," Phys. Lett. A 179, 244-248 (1993). [CrossRef]
  22. For open systems, the integration boundaries should be chosen close to the surface of the resonator, to avoid divergence of the integral in the denominator. Alternatively, radiating fields escaping from the volume of interest have to be taken into account by a surface integral.
  23. H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, "Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets," Phys. Rev. A 41, 5187-5198 (1990). [CrossRef] [PubMed]
  24. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, "Perturbation theory for Maxwell’s equations with shifting material boundaries," Phys. Rev. E 65, 066611 (2002). [CrossRef]
  25. M. Pinard, Y. Hadjar, and A. Heidmann, "Effective mass in quantum effects of radiation pressure," Eur. Phys. J. D 7, 107-116 (1999).
  26. H. J. Kimble, "Structure and dynamics in cavity quantum electrodynamics," in "Cavity Quantum Electrodynamics," P. R. Berman, ed. (Academic Press, 1994), Advances in Atomic, Molecular and Optical Physics.
  27. J. M. Dobrindt, I. Wilson-Rae, and T. J. Kippenberg, "Parametric normal-mode splitting in cavity optomechanics," Phys. Rev. Lett. 101, 263602 (2008). [CrossRef] [PubMed]
  28. S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, "Observation of strong coupling between a micromechanical resonator and an optical cavity field," Nature 460, 724-727 (2009). [CrossRef] [PubMed]
  29. H. B. Callen and T. A. Welton, "Irreversibility and generalized noise," Phys. Rev. 83, 34-40 (1951). [CrossRef]
  30. P. R. Saulson, "Thermal noise in mechanical experiments," Phys. Rev. D Part. Fields 42, 2437-2445 (1990). [CrossRef]
  31. V. B. Braginsky, S. E. Strigin, and V. P. Vyatchanin, "Parametric oscillatory instability in Fabry-Perot interferometer," Phys. Lett. A 287, 331-338 (2001). [CrossRef]
  32. V. B. Braginsky and S. P. Vyatchanin, "Low quantum noise tranquilizer for Fabry-Perot interferometer," Phys. Lett. A 293, 228-234 (2002). [CrossRef]
  33. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, "Laser Phase and Frequency Stabilization Using an Optical Resonators," Appl. Phys. B 31, 97-105 (1983). [CrossRef]
  34. T. W. Hänsch and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity," Opt. Commun. 35, 441-444 (1980). [CrossRef]
  35. Y. Hadjar, P. F. Cohadon, C. G. Aminoff, M. Pinard, and A. Heidmann, "High-sensitivity optical measurement of mechanical Brownian motion," Europhys. Lett. 47, 545-551 (1999). [CrossRef]
  36. M. L. Gorodetsky, and I. S. Grudinin, "Fundamental thermal fluctuations in microspheres," J. Opt. Soc. Am. B 21, 697-705 (2004). [CrossRef]
  37. A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. Kippenberg, "Resolved-sideband cooling of a micromechanical oscillator," Nat. Phys. 4, 415-419 (2008). [CrossRef]
  38. G. Heinzel, A. Rüdiger, and R. Schilling, "Spectrum and spectral density estimation by the discrete Fourier transform (DFT), including a comprehensive list of window functions and some new at-top windows," Tech. rep., Max Planck Society (2002). http://pubman.mpdl.mpg.de/pubman/item/escidoc:152164:1.
  39. Agilent Technologies, Agilent Application Note 1303: Spectrum and Signal Analyzer Measurements and Noise.
  40. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, "Optomechanically induced transparency," arXiv:1007.0565 (2010).
  41. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, "Near-field cavity optomechanics with nanomechanical oscillators," Nat. Phys. 5, 909-914 (2009). [CrossRef]
  42. G. Anetsberger, E. Gavartin, O. Arcizet, Q. P. Unterreithmeier, E. M. Weig, M. L. Gorodetsky, J. P. Kotthaus, and T. J. Kippenberg, "Measuring nanomechanical motion with an imprecision far below the standard quantum limit," arXiv:1003.3752 (2010).
  43. A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, and T. J. Kippenberg, "High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators," N. J. Phys. 10, 095015 (2008). [CrossRef]
  44. R. Ma, A. Schliesser, P. Del’Haye, A. Dabirian, G. Anetsberger, and T. Kippenberg, "Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres," Opt. Lett. 32, 2200-2202 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited