OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 23428–23434

Entirely passive reach extended GPON using Raman amplification

Benyuan Zhu  »View Author Affiliations


Optics Express, Vol. 18, Issue 22, pp. 23428-23434 (2010)
http://dx.doi.org/10.1364/OE.18.023428


View Full Text Article

Enhanced HTML    Acrobat PDF (809 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In previous investigation of extended GPON system, we employed 1240nm and 1427nm dual pumps within optical line terminal (OLT) equipments at central office (CO) to provide distributed Raman gains of upstream 1310nm and downstream 1490nm signals. These pump wavelengths were selected to ensure compatibility with the standard GPON wavelengths and reduce the unwanted pump-to-signal interactions. In this paper, we propose a new system scheme for an entirely-passive extended reach GPON to further enhance the system performance by eliminating the pump-to-signal interactions. In this scheme, a 1240 nm laser is employed to provide counter-pumping distributed Raman amplification of the upstream 1310nm signal, and a discrete Raman amplifier is integrated with the 1490nm transmitter to booster the downstream signal power and to improve the link loss budget. An operation over 60-km of zero-water-peak Allwave® fiber with a 1:128 way splitter is experimentally demonstrated at 2.5 Gbit/s. The system performance of such purely passive GPON extender is investigated in the paper. The system transmission limitation of upstream signal due to Raman ASE noises is discussed, and the non-linear impairment on downstream signal due to high launch power into feeder fiber is also examined.

© 2010 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: August 9, 2010
Revised Manuscript: September 29, 2010
Manuscript Accepted: September 29, 2010
Published: October 22, 2010

Citation
Benyuan Zhu, "Entirely passive reach extended GPON using Raman amplification," Opt. Express 18, 23428-23434 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-22-23428


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Chanclou, Z. Belfqih, B. Charbonnier, T. Duong, F. Frank, N. Genay, M. Huchard, P. Guignard, L. Guillo, B. Landousies, A. Pizzinat, H. Ramanitra, F. Saliou, S. Durel, A. Othmani, P. Urvoas, M. Ouzzif, and J. Le Masson, “Optical access evolutions and their impact on the metropolitan and home networks,” in Proceedings of ECOC 2008, paper We.3.F.1. (2008).
  2. H. Rohde, S. Smolorz, E. Gottwald, and K. Kloppe, “Next generation optical access: 1 Gbit/s for everyone,” in Proceedings of ECOC 2009, paper 10.5.5. (2009)
  3. IITU-T Series Recommendation G.984, “Gigabit-capable passive optical networks (GPON),” (2008)
  4. K. Suzuki, Y. Fukada, D. Nesset, and R. Davey, “Amplified gigabit PON systems,” J. Opt. Netw. 6(5), 422 (2007). [CrossRef]
  5. D. Nesset, S. Appathurai and R. Davey, “Extended research GPON using high gain semiconductor optical amplifier,” in Proceeding of OFC2008, paper JWA107 (2008).
  6. P. P. Iannone, H. H. Lee, K. C. Reichmann, X. Zhou, M. Du, B. Palsdottir, K. Feder, P. Westbrook, K. Brar, J. Mann, and L. Spiekman, “Hybrid CWDM amplifier shared by multiple TDM PONs,” in Proceeding of OFC2007, paper PDP-13 (2007).
  7. B. Zhu and D. Nesset, “GPON reach extension to 60km with entirely passive fiber using Raman amplifiers,” in Proceedings of ECOC 2009, paper 8.5.5. (2009).
  8. IITU-T Series Recommendation G.984.2, “Gigabit-capable passive optical networks (G-PON): Physical media dependent (PMD) layer specification,” Amendment 2 (2008).
  9. S. Grubb, T. Strasser, W.Y. Cheung, W. A. Reed, V. Mizrahi, T. Erdogan, P. J. Lemaire, A. M. Vengsarkar, and D. J. DiGiovanni, “High-Power 1.48 mm cascaded Raman laser in Germano-silicate fibers,” in Proceeding of OAA’1993, paper PD3, (1993).
  10. P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10(1), 159–161 (1998). [CrossRef]
  11. M. H. Eiselt, “Distributed Raman Amplification on fiber with large connector losses,” in Proceeding of OFC2008, paper OWI31 (2006).
  12. J. Bromage, P. J. Winzer, and R.-J. Essiambre, “multiple path interference and its impact on system design”, book chapter 15, p491, “Raman amplifiers for telecommunications” edited by M.N. Islam, (2003)
  13. F. Forghieri, R. W. Tkach, and A. R. Chraplyvy, “fiber nonlinearities and their impact on transmission systems”, book chapter 10, p196, “Optical fiber telecommunications” IIIA, edited by I. P. Kaminow and T. L. Koch (1997)
  14. D. Nesset and P. Wright, “Raman extender GPON using 1240nm semiconductor quantum-dot lasers”, in Proceeding of OFC2010, paper OThW6 (2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited