OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 23442–23457

Silicon nanowire optical waveguide (SNOW)

Mohammadreza Khorasaninejad and Simarjeet Singh Saini  »View Author Affiliations


Optics Express, Vol. 18, Issue 22, pp. 23442-23457 (2010)
http://dx.doi.org/10.1364/OE.18.023442


View Full Text Article

Acrobat PDF (3539 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we propose a novel optical waveguide consisting of arrays of silicon nanowires in close proximity. We show that such a structure can guide an optical mode provided the electric field is polarized along the length of the nanowires. Furthermore, such guidance can happen even if the nanowires are arranged randomly albeit at a higher scattering loss. On the other hand, high radiation losses are observed if the electric field is polarized in the transverse direction to the nanowires. We calculate the optical radiation loss for different structures using Finite Difference Time Domain (FDTD) method. We also show that the arrayed nanowire region can be approximated using an effective index bulk waveguide. The approximation allows for design and optimization of optical structures using integrated optics methodology resulting in significant savings in time and resources. The advantage of the proposed waveguide structure is that it allows for increased optical confinement while using the enhanced optical interactions of nanowire structures compared to single nanowire photonic waveguide for diameters smaller than 100 nm. For a diameter of 50 nm for the silicon nanowire, an optical confinement factor of 33 % was achieved in the proposed waveguide as opposed to 0.1 % that is achieved for a single nanowire photonic waveguide. A radiation loss of 0.12 cm−1 is achieved for nanowires of the same diameter spaced 75 nm apart. While our analysis is done on silicon nanowires at 1550 nm, the proposed structures can be extended to other materials and wavelength regimes also.

© 2010 Optical Society of America

OCIS Codes
(040.6040) Detectors : Silicon
(230.7370) Optical devices : Waveguides
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optical Devices

History
Original Manuscript: September 8, 2010
Revised Manuscript: October 8, 2010
Manuscript Accepted: October 9, 2010
Published: October 22, 2010

Citation
Mohammadreza Khorasaninejad and Simarjeet Singh Saini, "Silicon nanowire optical waveguide (SNOW)," Opt. Express 18, 23442-23457 (2010)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-22-23442


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Liu, H. Rong, R. Jones, O. Cohen, D. Hak, and M. Paniccia, "Optical amplification and lasing by stimulated Raman scattering in silicon waveguides," J. Lightwave Technol. 24, 1440-1455 (2006). [CrossRef]
  2. R. Jones, A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Lossless optical modulation in a silicon waveguide using stimulated Raman scattering," Opt. Express 13, 1716-1723 (2005). [CrossRef]
  3. Q. Xu, V. Almeida, and M. Lipson, "Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides," Opt. Express 12, 4437-4442 (2004). [CrossRef]
  4. O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, "All optical switching and continuum generation in silicon waveguides," Opt. Express 12, 4094-4102 (2004). [CrossRef]
  5. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 12, 4629-4637 (2005). [CrossRef]
  6. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, "Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction," Opt. Lett. 26, 1888-1890 (2001). [CrossRef]
  7. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics Devices Based on Silicon Microfabrication Technology," IEEE J. Sel. Top. Quantum Electron. 11, 232-240 (2005). [CrossRef]
  8. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, "Low loss etchless silicon photonic waveguides," Opt. Express 17, 4752-4757 (2009). [CrossRef]
  9. B. A. Daniel, and G. P. Agrawal, "Vectorial nonlinear propagation in silicon nanowire waveguides: polarization effects," J. Opt. Soc. Am. B 27, 956-964 (2010). [CrossRef]
  10. V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003). [CrossRef]
  11. A. G. Nassiopoulos, S. Grigoropoulos, and D. Papadimitriou, "Electroluminescent device based on silicon nanopillars," Appl. Phys. Lett. 69, 2267-2269 (1996). [CrossRef]
  12. J. Huo, R. Solanki, J. L. Freeouf, and J. R. Carruthers, "Electroluminescence from silicon nanowires," Nanotechnology 15, 1848-1859 (2004). [CrossRef]
  13. S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain and stimulated emission in periodic nanopatterned crystalline silicon," Nat. Mater. 4, 887-891 (2005). [CrossRef]
  14. M. J. Chen, J. L. Yen, J. Y. Li, J. F. Chang, S. C. Tsai, and C. S. Tsaic, "Stimulated emission in a nanostructured silicon pn junction diode using current injection," Appl. Phys. Lett. 84, 2163-2165 (2004). [CrossRef]
  15. D. Shiri, Y. Kong, A. Buin, and M. P. Anantram, "Strain induced change of bandgap and effective mass in silicon nanowires," Appl. Phys. Lett. 93, 073114 (2008). [CrossRef]
  16. L. Cao, B. Nabet, and J. E. Spanier, "Enhanced raman scattering from individual semiconductor nanocones and nanowires," Phys. Rev. Lett. 96, 157402 (2006). [CrossRef]
  17. Z. Li, B. Rajendran, T. I. Kamins, X. Li, Y. Chen, and R. S. Williams, "Silicon nanowires for sequence-specific DNA sensing: device fabrication and simulation," Appl. Phys., A Mater. Sci. Process. 80, 1257-1263 (2005). [CrossRef]
  18. W. Chen, H. Yao, C. H. Tzang, J. Zhu, M. Yang, and S. T. Lee, "Silicon nanowires for high-sensitivity glucose detection," Appl. Phys. Lett. 88, 213104 (2006). [CrossRef]
  19. K. Q. Peng, Z. P. Huang, and J. Zhu, "Fabrication of large-area silicon nanowire p-n junction diode arrays," Adv. Mater. (Deerfield Beach Fla.) 16, 7376 (2004).
  20. C. J. Barrelet, A. B. Greytak, and C. M. Lieber, "Nanowire Photonic Circuit Elements," Nano Lett. 4, 1981-1985 (2004). [CrossRef]
  21. M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room-Temperature Ultraviolet Nanowire Nanolasers," Science 292, 1897-1899 (2001). [CrossRef]
  22. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, "Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices," Nature 409, 66-69 (2001). [CrossRef]
  23. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003). [CrossRef]
  24. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, "Plasmonics - A Route to Nanoscale Optical Devices," Adv. Mater. 13, 1501-1505 (2001). [CrossRef]
  25. J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, "Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires," Science 293, 1455-1457 (2001). [CrossRef]
  26. T. J. Cui, D. R. Smith, and R. Liu, Metamaterials Theory, Design and Applications, (Springer, 2009).
  27. L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, "Epitaxial core-shell and core-multishell nanowire heterostructures," Nature 420, 57-61 (2002). [CrossRef]
  28. M. Law, J. Goldberger, and P. Yang, "Semiconductor nanowires and nanotubes," Annu. Rev. Mater. Res. 34, 83-122 (2004). [CrossRef]
  29. M. D. Henry, S. Walavalkar, A. Homyk, and A. Scherer, "Alumina etch masks for fabrication of high-aspect-ratio silicon micropillars and Nanopillars," Nanotechnology 20, 1-4 (2009). [CrossRef]
  30. M. Gharghi, and S. Sivoththaman, "Formation of Nanoscale Columnar Structures in Silicon by a Maskless RIE Process," J. Vac. Sci. Technol. A 24, 723-727 (2006). [CrossRef]
  31. H. J. Eom, Electromagnetic Wave Theory for Boundary-Value Problems, (Springer, 2004).
  32. M. Cai, O. Painter, and K. J. Vahala, "Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System," Phys. Rev. Lett. 85, 7477 (2000).
  33. G. M. Alman, L. A. Molter, H. Shen, and M. Dutta, "Refractive Index Approximations from Linear Perturbation Theory for Planar MQW Waveguides," IEEE J. Quantum Electron. 28, 650-657 (1992). [CrossRef]
  34. K. C. Kwan, X. Zang, Z. Q. Zhang, and C. T. Chan, "Effects due to disorder on photonic crystal-based waveguides," Appl. Phys. Lett. 25, 4414-4416 (2004).
  35. J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, "Control of Thickness and Orientation of Solution-Grown Silicon Nanowires," Science 287, 1471-1473 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited