OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 18, Iss. 22 — Oct. 25, 2010
  • pp: 23458–23465

Beam bending via plasmonic lenses

Yanhui Zhao, Sz-Chin Steven Lin, Ahmad Ahsan Nawaz, Brian Kiraly, Qingzhen Hao, Yanjun Liu, and Tony Jun Huang  »View Author Affiliations

Optics Express, Vol. 18, Issue 22, pp. 23458-23465 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (971 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have designed and characterized three different types of plasmonic lenses that cannot only focus, but can also bend electromagnetic (EM) waves. The bending effect is achieved by constructing an asymmetric phase front caused by varying phase retardations in EM waves as they pass through a plasmonic lens. With an incident wave normal to the lens surface, light bends up to 8° off the axial direction. The optical wave propagation was numerically investigated using the finite-difference time-domain (FDTD) method. Simulation results show that the proposed plasmonic lenses allow effective beam bending under both normal and tilted incidence. With their relatively large bending range and capability to perform in the far field, the plamsonic lenses described in this article could be valuable in applications such as photonic communication and plasmonic circuits.

© 2010 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

Original Manuscript: September 13, 2010
Revised Manuscript: October 11, 2010
Manuscript Accepted: October 15, 2010
Published: October 22, 2010

Yanhui Zhao, Sz-Chin Steven Lin, Ahmad Ahsan Nawaz, Brian Kiraly, Qingzhen Hao, Yanjun Liu, and Tony Jun Huang, "Beam bending via plasmonic lenses," Opt. Express 18, 23458-23465 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born, and E. Wolf, Principle of Optics, Seventh Edition, Cambridge University Press, 1999.
  2. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5(9), 1726–1729 (2005). [CrossRef] [PubMed]
  3. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008). [CrossRef] [PubMed]
  4. C. K. Chang, Y. Y. Yu, M. W. Lai, J. T. Yeh, J. M. Liu, C. S. Yeh, and C. K. Lee, “Recording Bessel-like beam shapes generated by plasmonics lens,” Opt. Express 17(16), 13946–13952 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-16-13946 . [CrossRef] [PubMed]
  5. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009). [CrossRef] [PubMed]
  6. J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett. 94(8), 083501 (2009). [CrossRef]
  7. Y. Fu, Y. Liu, X. Zhou, Z. Xu, and F. Fang, “Experimental investigation of superfocusing of plasmonic lens with chirped circular nanoslits,” Opt. Express 18(4), 3438–3443 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-4-3438 . [CrossRef] [PubMed]
  8. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007). [CrossRef] [PubMed]
  9. L. Martin-Moreno, “Plasmonic circuits: Detecting unseen light,” Nat. Phys. 5(7), 457–458 (2009). [CrossRef]
  10. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010). [CrossRef] [PubMed]
  11. S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34(20), 3047–3049 (2009),
 http://www.opticsinfobase.org/abstract.cfm?URI=ol-34-20-3047 . [CrossRef] [PubMed]
  12. B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron. 34(2), 47–87 (2010). [CrossRef]
  13. H. Shi, C. Du, and X. Luo, “Focal length modulation based on a metallic slit surrounded with grooves in curved depths,” Appl. Phys. Lett. 91(9), 093111 (2007). [CrossRef]
  14. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009). [CrossRef]
  15. L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10(5), 1936–1940 (2010). [CrossRef] [PubMed]
  16. S. Kim, H. Kim, Y. Lim, and B. Lee, “Off-axis directional beaming of optical field diffracted by a single subwavelength meatl slit with asymmetric dielectric surface gratings,” Appl. Phys. Lett. 90(5), 051113 (2007). [CrossRef]
  17. Z. Liu, J. M. Steele, H. Lee, and X. Zhang, “Tuning the focus of a plasmonic lens by the incident angle,” Appl. Phys. Lett. 88(17), 171108 (2006). [CrossRef]
  18. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  19. E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16(1), 45–57 (2008),
 http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-1-45 . [CrossRef] [PubMed]
  20. D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29(10), 1069–1071 (2004),
 http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-10-1069 . [CrossRef] [PubMed]
  21. T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett. 10(8), 3123–3128 (2010). [CrossRef] [PubMed]
  22. G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, “Excitation of surface polaritons by end-fire coupling,” Opt. Lett. 8(7), 386–388 (1983),
 http://www.opticsinfobase.org/abstract.cfm?URI=ol-8-7-386 . [CrossRef] [PubMed]
  23. R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13(6), 1933–1938 (2005),
 http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-6-1933 . [CrossRef] [PubMed]
  24. Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano- optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004). [CrossRef]
  25. Mathematica 7.0, licensed to ESM department, Penn State University. http://www.wolfram.com/
  26. Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: Superfocusing at visible regime,” Appl. Phys. Lett. 91(6), 061124 (2007). [CrossRef]
  27. F. D. T. D. Optiwave, 8.0, licensed to BioNEMS group, Penn State Univ. http://www.optiwave.com/
  28. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  29. H. Raether, (1988). Surface plasmons on smooth and rough surfaces and on gratings. Springer Verlag, Berlin. ISBN 978–3540173632.
  30. Image Processing and Analysis in Java (ImageJ). http://rsbweb.nih.gov/ij/
  31. J. A. Kong, Electromagnetic Wave Theory, EMW Publishing, 2005.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited